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Centre de Géostatistique, Ecole des Mines de Paris, Paris, France

(Manuscript received 22 November 1997, in final form 30 April 1998)

ABSTRACT

The term downscaling denotes a procedure in which local climatic information is derived from large-scale
climate parameters. In this paper, the possibility of using as downscaling procedure a geostatistical interpolation
technique known as kriging is explored. The authors present an example of the method by trying to reconstruct
monthly winter precipitation in the Iberian Peninsula from the North Atlantic sea level pressure (SLP) field in
wintertime (December–February).

The main idea consists in reducing the spatial dimension of the large-scale SLP field by means of empirical
orthogonal function (EOF) analysis. Each observed SLP field is represented by a point in this low-dimensional
space and this point is associated with the simultaneously observed rainfall. New values of the SLP field, for
instance, those simulated by a general circulation model with modified greenhouse gas concentrations, can be
represented by a new point in the EOF space. The rainfall amount to be associated to this point is estimated
by kriging interpolation in the EOF space.

The results obtained by this geostatistical approach are compared to the ones obtained by a simpler analog
method by trying to reconstruct the observed rainfall from the SLP field in an independent period. It has been
found that, generally, kriging and the analog method reproduce realistically the long-term mean, that kriging is
somewhat better than the analog method in reproducing the rainfall evolution, but that, contrary to the analog
method, it underestimates the variance because of the well-known smoothing effect. It is argued that there exists
an intrinsic incompatibility between the estimation of the mean and replication of the variability.

Finally, both methods have been also applied to daily winter rainfall. The methods are also validated by
downscaling winter precipitation from SLP. It is concluded that kriging yields a better estimation of daily rainfall
than the analog method, but the latter better reproduces the probability distribution of rainfall amounts and of
the length of dry periods.

1. Introduction

One major problem concerning climate simulations
with general circulation models (GCMs) is related to
the scale at which GCM simulations can be considered
skillful: if it is currently accepted that present-day
GCMs are able to simulate the large-scale atmospheric
states in a generally realistic manner (large-scale refers
to processes with a characteristic scale of several grid
lengths) and that they are thus a useful tool to predict
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large-scale climate changes, their implications for re-
gional climate are much more questionable. Thus, for
instance, one of the largest uncertainties in climate sim-
ulations produced by the present generation of models
concerns the small-scale hydrological processes, such
as precipitation, cloud formation, infiltration, or evap-
oration. All of these processes occur over a much small-
er scale than the resolution of today’s GCMs, which is
limited by computational considerations to typical grid
sizes of 200–500 km.

The origins of this lack of skill have already been
discussed in the literature (Grotch and MacCracken
1991; von Storch 1995). Several general methods, called
downscaling methods, have been suggested so far to
overcome this scale mismatch. One category makes use
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of nested high-resolution dynamical models (dynamical
downscaling; Giorgi and Mearns 1991) whereas others
use empirical-statistical methods (statistical downscal-
ing; Karl et al. 1990) to link large- and small-scale
variables. The statistical models are based on obser-
vational records. Once the statistical model parameters
are estimated from a training set of large-scale and local
observations, they may be used to infer changes in the
local variables due to changes in the large-scale fields
simulated by GCM sensitivity experiments.

Pursuing the latter approach, many recent applica-
tions of statistical downscaling techniques can be found
in the literature (for a review see, e.g., Hewitson 1996;
Wilby and Wigley 1997). Most of them make use of
linear regression methods between the large-scale var-
iables and the local variables. Relatively few studies are
based on nonlinear methods, such as neural networks
(Hewitson 1996), classification and regression trees
(Hughes et al. 1993), the analog method (Zorita et al.
1995), or classification methods (Hulme et al. 1993;
Bardossy and Plate 1992). Nonlinear methods are es-
pecially necessary when the relationship between the
climate large-scale and local parameters follow different
probability laws. In this case a linear statistical model
cannot describe appropriately the physical link between
both sets of variables. This is, for instance, the case for
large-scale atmospheric circulation and daily rainfall.
On the other side, the application of nonlinear methods
is often more difficult from the theoretical and numerical
point of view.

In this paper, we explore the possibility of using for
downscaling purposes a well-known geostatistical in-
terpolation technique known as kriging, which behaves
nonlinearly with respect to the spatial coordinates (for
a complete presentation of geostatistics and its methods
see, e.g., Chauvet 1994; Wackernagel 1995). Kriging
was originally applied in the mining industry to inter-
polate spatial data obtained by geological soundings. In
climate research it has been used, for instance, to in-
terpolate observed climate fields (e.g., Holdaway 1996).
Downscaling is a novel application of kriging, but there
exists a fairly large amount of theoretical studies and
practical applications that may be of considerable sup-
port in this respect (Rouhani and Wackernagel 1990;
Amani and Lebel 1997).

In the normal setting, kriging is used in geostatistics
as a two- or three-dimensional interpolation technique
based on the estimated spatial covariance structure of
the observed data. The idea of using kriging to build a
statistical model between large-scale climate variables
and local variables is based on the fact that in many
climate studies the dimensionality of the large-scale cli-
mate field is reduced by means of empirical orthogonal
function analysis (EOF analysis, also known as principal
component analysis; see, e.g., Mardia et al. 1978; Sa-
porta 1990) to a limited number of characteristic pat-
terns of variability. These EOFs constitute the basis in
which predictors or predictands are represented in many

statistical linear models. Each configuration of the large-
scale field corresponds to a point in the space of reduced
dimensionality spanned by its own EOFs. The local var-
iable simultaneously observed with the large-scale field
is then associated to this point in the EOF space. Thus
the observations of the local variable form a discrete
sampling of a function defined in the EOF space of the
large-scale field. New configurations of the large-scale
field, for instance, those observed in another period or
simulated by a GCM, may be represented by a point in
the EOF space and the associated value of the local
variable at this point may be estimated by interpolation
or extrapolation in this space using kriging.

It should be underlined that this is quite an unusual
application of kriging. This technique is normally used
in a two- or three-dimensional geographical space,
whereas in this case the kriging interpolation is per-
formed in the EOF space of the sea level pressure (SLP)
field, which may in principle have many more dimen-
sions. In the application to monthly rainfall it has been
found that the space spanned by the leading two SLP
EOFs is enough to obtain reasonable results, but in the
case of daily rainfall (see section 6) kriging is performed
in a 15-dimensional space.

We present an example of the method by trying to
reconstruct the winter precipitation in stations located
in the western Mediterranean region from the North
Atlantic SLP field in wintertime (December–February).
The results obtained by kriging are compared to the ones
obtained by a much simpler analog method, which, due
to its simplicity, may be considered in this context as
a benchmark. We consider two timescales: the monthly
timescale, where the distribution of rainfall amount is
more or less normal, therefore allowing linear methods
to have been previously applied with success (von
Storch et al. 1993; Busuioc and von Storch 1996); and
daily rainfall, which has a much more skewed distri-
bution. Also the requirements for downscaling rainfall
at these two timescales are somewhat different. At
monthly timescales the most important point is a good
estimation of the mean, whereas for daily rainfall other
aspects, such as the probability of rainfall amount, ex-
tremes, length of dry periods, etc., may be sometimes
quite important.

The paper is organized as follows: after a short pre-
sentation of data in section 2, the kriging interpolation
technique is briefly described and the kriging setting in
the EOF space, a somewhat unusual application, is ex-
plained in section 3. Section 4 focuses on the autocor-
relation structure of local precipitation as described in
the space of the SLP EOFs by the so-called variograms.
Section 5 then presents the detailed results of kriging
and analog downscaling at monthly timescales. Finally,
in section 6, kriging and analog downscaling are applied
to daily data. Some important aspects of the results ob-
tained are discussed in section 7. The paper is closed
with some concluding remarks in section 8 and by one
appendix.
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FIG. 1. Positions of the 50 stations under study. The names corre-
spond to the stations explicitly cited in the text.

2. Data description

Winter (December–February; hereafter DJF) precip-
itation monthly totals records at 50 Spanish, Portuguese,
southern French, and North African stations over a pe-
riod of 91 yr (1899–1989) were prepared by the Univ-
ersidad Complutense (Madrid). Since the relationship
between SLP and rainfall in western Europe is known
to be stronger in winter, only winter data (DJF) were
considered. The positions of stations are shown in Fig. 1.

The SLP dataset was obtained from the National Me-
teorological Center (now the National Centers for En-
vironmental Prediction). It consists of monthly mean
(DJF) SLP over the same period (1899–1989). The orig-
inal SLP data were interpolated onto a 58 lat 3 58 long
grid and we selected a box that covered the North At-
lantic sector within 158–858N and 708W–208E. A wide
westward extension was chosen since it is known that
the Atlantic weather systems influence Iberian Peninsula
rainfall.

The rainfall and SLP data were linearly detrended.

3. Kriging setting

a. Short description of kriging

A geostatistical study usually deals with a sample of
observations (environmental, chemical, meteorological,
etc.) z(xa) at different locations xa. The observation
z(xa) (in the kriging terminology known as the region-
alized variable) is considered as a realization of a ran-
dom function Z(x).

An important tool in geostatistics is the experimental
variogram, which is a measure of the variability of the
regionalized variable at different spacings. The exper-
imental variogram g*(h) as a function of the point sep-
aration h is defined as

N(h)1
2g*(h) 5 [z(x 1 h) 2 z(x )] , (1)O a a2N(h) a51

where h is a vector in geographical space and N(h) is
the number of sample points linked by h, possibly with
a certain amount of tolerance on the length and the
orientation of the vector.

Normally the experimental variogram is based on too
few sample points and needs to be approximated by a
theoretical function g(h), which allows one to estimate
the variogram analytically for any distance h; this func-
tion is called the variogram model. In practice, the mod-
eling step is mainly interactive. Using high quality
graphical devices here is particularly advantageous for
representing and interrogating the data with a set of
geostatistical tools—histograms, scatter diagrams, var-
iogram clouds, etc.—which help interpret the structure
of the stochastic process being studied.

Once the variogram models have been fitted to the
experimental variograms, it is possible to perform the
estimation by kriging. Kriging is a method used to es-
timate the value of the regionalized variable under study
at a location x where it has not been measured, if its
values are known at N locations x1, . . . , xN. Normally,
a linear estimator is used:

N

Z*(x) 5 l Z(x ), (2)O a a
a51

where the unknowns of the problem are the weights la.
The value of the weights are determined by mini-

mizing the variance of the estimation error Z*(x) 2 Z(x).
It can be shown that the minimization of this variance
under certain assumptions about the random function Z
(see the appendix for a slightly more detailed mathe-
matical description) leads to the system of linear equa-
tions:

N
2 l g(x 2 x ) 1 m 5 2g(x 2 x )O b a b a

b51 (3)N l 5 1.O b b51

The observation points that enter these equations may
be all the points available or may be just in the neigh-
borhood of the estimation point, depending on the par-
ticular application. The unknowns of the system are the
weights la and m is a Lagrangian multiplier. Once the
values of the unknown weights have been found it is
possible to get the estimated value of the regionalized
variable at the point x by the expression

N

z*(x) 5 l z(x ). (4)O a a
a51

b. Kriging setting in the EOF space of the SLP field

As stated in the introduction, the points where kriging
is performed are defined in the space of the SLP EOFs.
It is possible to obtain a simplified spatial representation
of the SLP dataset by performing an EOF analysis. The
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principle of this well-known data analysis method (see,
e.g., Mardia et al. 1978; Saporta 1990) is to obtain an
optimal approximate representation of the original
anomalies of the multivariate field f(t) by projecting it
onto a subspace of lower dimension:

n

f(t) 5 p a (t) 1 e(t), (5)O i i
i51

where n is typically a small number, pi are the spatial
patterns, ai(t) are the coordinates of f(t) in the basis
spanned by pi, and e(t) is the part of f not described by
the patterns pi.

The EOFs pi are defined as the patterns that minimize
the variance of e and are also orthogonal to one another.
For further information about the use of EOFs in cli-
matology, see von Storch and Navarra (1995).

The EOFs pi are defined up to a proportionality con-
stant. To unambiguously define the EOFs we addition-
ally require that the coordinates a i(t) have unit-time
variance. In this way the EOF patterns contain the in-
formation about the typical magnitude of the SLP anom-
alies.

Figure 2 shows the two leading EOFs of the North
Atlantic SLP in winter. The first pattern shows a dipole
structure with low pressure centered over Iceland versus
high pressure over the Azores, and it is associated with
the intensity of the geostrophic zonal wind (east–west
wind) over the North Atlantic area. This pattern is also
closely associated with the North Atlantic oscillation
(Lamb and Peppler 1987). The second SLP pattern
shows anomalies of the same sign over the whole North
Atlantic, and it has been sometimes denoted as the west-
ern Atlantic pattern.

The EOF analysis allows the representation of much
of the variability of SLP anomalies by just a few co-
ordinates. In this case just the two leading EOFs, which
together explain 60% of the SLP variability, have been
retained.

The kriging interpolation is performed separately for
each rainfall station in this low-dimensional EOF space
as follows: for each rainfall station the value of the
precipitation at a month m is attached to a point in a
two-dimensional space, the coordinates of which are the
first two EOF coordinates of the SLP field at the month
m. Thus the rainfall observations for each station can
be represented by a data cloud in this two-dimensional
space. Two examples of this data cloud, for two stations
located in the east and in the west of the peninsula, are
presented in Fig. 3.

The point where the rainfall values have to be esti-
mated may be individual points given by SLP anomalies
observed in another period (e.g., for validation of this
method) or SLP anomalies simulated by a GCM (for
downscaling of simulated climate change). Both can be
projected onto the leading two SLP EOFs yielding two
coordinates in the EOF space. In this way, kriging en-

ables the values of local precipitation associated with
the SLP field to be estimated.

To check the validity of this precipitation estimator
based on kriging, we tried to reconstruct the winter Ibe-
rian rainfall in the period 1969–89. Thus the data from
1899 to 1968 were used as input data to the geostatistical
analysis, that is for the determination of the variograms,
and the statistical model was validated in the remaining
period.

4. Variographical analyses

a. Results

A variographical study should be based on sound
physical, chemical, or environmental knowledge of the
phenomenon; the variography’s role in the classic sit-
uation consists merely of quantifying the structural in-
formation for further estimation procedures. In the pre-
sent case, the main difficulty of the geostatistical study
is precisely the indirect physical meaning of the EOF
coordinate space. It is thus quite difficult to refer to
external evidence in order to improve, or at least to
conduct, a variographical analysis. Nevertheless, the ex-
perimental variogram certainly remains a convenient
tool for exploring the structure of the data described in
the previous section.

It was found in practice that the variability of the
rainfall data in the EOF space was almost identical in
all directions of the EOF space, which means that the
phenomenon is isotropic and the variogram depends
only on the modulus of h. Therefore, in order to simplify
the study we neglect some occasional weak geometric
anisotropies that could be reduced to isotropies by a
mere linear transformation of the coordinates (see Jour-
nel and Huijbregts 1978).

Inspection of the experimental variogram for each
station revealed that they can be divided into three dis-
tinct categories (see Fig. 4, which presents an example
of each category).

1) Six of the 50 variograms appear as pure nugget effect
(flat variograms). A pure nugget effect corresponds
to a total absence of correlation between the Z(x)
and Z(x 1 h), at least for all available distances.
Mathematically, the corresponding variogram model
gv(h) is as follows:

0 for |h| 5 0
g (h) 5 (6)w 5C for |h| ± 0,0

where C0 is a constant called the sill.
2) Nine variograms can be fitted with a bounded nested

structure (see the appendix for an exact definition of
bounded variogram models) composed of (a) a nug-
get effect, the amplitude C0 of the discontinuity at
the origin being contained between 40% and 80%
of the data total variance (see Fig. 4), and (b) a
spherical model described by
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FIG. 2. The two leading EOFs of the SLP field in winter; units in mb. The percentage of explained variance is given in the
lower corner of the diagrams.

FIG. 3. Monthly rainfall in winter represented in the space of the two leading SLP EOFs: (a) Orense and (b) Barcelona
data. The size of each cross is proportional to the rainfall amount attached to the point. Note that the locations of the
data are the same for the two stations.

 33 |h| 1 |h|C 2 if 0 # |h| # a
3[ ]g (h) 5 2 a 2 as (7)

C if |h| . a.

Here C is called the sill and a is called the range.
Due to the normalization of the EOF coordinates, h
ranges typically between 0 and 9 and in our case a
. 0.5, making it sometimes difficult to choose be-
tween a pure nugget effect and a spherical model.
The variogram models connected with this second
category can then be written as follows:

g(h) 5 gw(h) 1 gs(h) 5 C0 1 gs(h)

for |h| ± 0. (8)

3) Finally, the 35 remaining observed variograms are
similar and can be modeled by an unbounded model
variogram as follows.
(a) A nugget effect, with the amplitude contained

between 25% and 70% of the data variance (see
Fig. 4).

(b) An unbounded variogram, which is modeled by
an infinite parabolic increase and corresponds to
an increasingly smooth regionalized variable. It
is then convenient to adopt a so-called intrinsic
without-drift model (see the appendix for an ex-
act definition of intrinsic without-drift vario-
gram models). We chose a power model,

gp(h) 5 a|h|u with 0 , u , 2. (9)

Thus the theoretical model adopted can be repre-
sented, for each of the 35 stations, by the equation

g(h) 5 gw(h) 1 gp(h) 5 C0 1 gp(h)

for |h| ± 0. (10)

Furthermore, it was observed that the stations with
unbounded variogram models are located in the west
and center of the Iberian Peninsula (98W–08) as well as
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FIG. 4. Three typical examples of experimental variograms (solid lines) with their associated models (thick
solid lines). The notations are as follows: W for pure nugget effect (White noise), S for spherical model, and P
for power model. We also show the data variance (dotted lines).

in a part of southern France. The nonstationarity in-
creases toward the west (the power of the variogram
models approaches the value 2). On the other hand, 90%
of the stations modeled with bounded or pure nugget
effect variogram models are located around the Medi-
terranean and in the north of Spain (Gulf of Biscay).

b. Interpretation

Through the fitting of several variogram model cat-
egories (unbounded models vs bounded models), we
observe a discrimination between the stations located
in the west and center of the Iberian Peninsula (power
models) (and perhaps some stations located in the south
of France, too) and those located around the Mediter-
ranean and in the north of Spain (spherical and pure
nugget effect models). This phenomenon can be ex-
plained in terms of EOF analysis performed on the SLP
field. The first and second SLP EOFs discriminate be-
tween the winter months of high precipitation and those
of weak precipitation for stations located in the west
and in the center of the area under study, but this effect
is much less clear in the stations located in the Medi-
terranean basin (see Fig. 3). It is observed that the neg-

ative values of the first and second principal components
correspond to high rainfall, whereas the positive values
correspond to weaker rainfall. This correlation gets
stronger toward the west. The power variograms rep-
resent this link between SLP and rainfall. Physically,
the rainfall gradient in EOF space can be interpreted
with the help of Fig. 2, where the physical patterns
associated with the first two EOFs are shown. Negative
amplitudes of the first of these patterns represent a weak-
ened Azores high that allows the Atlantic weather sys-
tems to enter the Iberian Peninsula. Negative amplitudes
of the second pattern are linked to geostrophic advection
of moist air by low pressure cells located off the British
coast. An analogous reasoning explains the link between
positive values of the principal components and lower
than normal rainfall.

This result is consistent with the conclusions of von
Storch et al. (1993), who noted that a large-scale SLP
pattern, essentially the first EOF, is the most important
atmospheric phenomenon in the Atlantic area associated
with Iberian winter rainfall. The authors also noted that
the link between the North Atlantic SLP and the pre-
cipitation was higher near the Atlantic coast, with cor-
relations decreasing toward the east.
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FIG. 5. Position of the coordinates in the EOF space. Points indicate
the data used for the variographical analysis (1899–1968); ‘‘k’’ de-
notes the points where the estimation was performed (1969–89).

5. Validation of the method and comparison with
the analog method

a. Results

As a logical continuation of the previous sections, the
amount of rainfall at each of the 50 Iberian Peninsula
stations for the winter months (DJF) of the years 1969–
89 was estimated by kriging. For the previous vario-
graphical analysis and for the calculation of the SLP
EOFs only the years 1899–1968 were used. It is thus
possible to compare the precipitation estimates obtained
by kriging with the in situ observations. The kriging
operation will be repeated at each of the 63 time steps
(once again, winter months from 1969 to 1989; see Fig.
5 for the coordinates of these estimation points in EOF
space).

A simpler method has been proposed that uses the
precipitation information carried by only one point cho-
sen in the EOF space. This alternative downscaling
scheme is called the analog method (Zorita et al. 1995).
As applied by these authors the analog method operates
in the same EOF space as in the present paper but simply
chooses as an estimate at a given point the closest ob-
servation. If several estimation points have the same
observation point as the closest, they will of course get
the same value.1

The main difference between kriging and analog es-
timation is that an analog estimation makes use of in-
formation carried by only one point (the closest), where-
as kriging uses a linear combination of the information
at all data points. For these reasons, and in order to
check to what extent the additional technical compli-
cations of kriging in an unusual application really bring
an improvement over a simpler method, it was decided

1 The analog method is called the ‘‘Polygon method’’ in mining
(see, e.g., Wackernagel 1995).

to compare the results obtained by kriging with the re-
sults obtained by the analog method.

For each station three measures have been used to
compare the results of both methods:

1) the long-term observational means of the recon-
structed rainfall and of the in situ observations,

2) the observed and reproduced standard deviations,
and

3) the linear correlation coefficients between the ob-
served and simulated rainfall time series.

It has to be noted that when the variogram model
adopted for a station is a pure nugget effect, kriging
yields the mean of the observation points as output,
independently of the location of the estimation point. It
follows, for such stations, that the reconstructed time
series are constant, making meaningless the calculation
of the linear correlation coefficient. In such cases, the
presence of a pure nugget effect was depicted with ‘‘W’’
(white noise) in the figures showing the correlation co-
efficients.

Figures 6 and 7 depict, respectively, the linear cor-
relation coefficients between reconstructions and ob-
servations and the long-term means and the standard
deviations estimated by kriging and the analog method.
We note the following.

1) The kriging linear correlation coefficients are good
in the center of the Iberian Peninsula (58W–08), with
a typical value of 0.7; they get better toward the west
and reach values higher than 0.85 near the western
coast (Portugal’s and Spain’s Atlantic coasts).

2) All the stations located around the Mediterranean
coast (North African, Spanish, and southern French
coasts) exhibit low correlation between kriging es-
timation and observations (sometimes with negative
values). The same is observed for the stations located
in the north of Spain (Gulf of Biscay).

3) The analog method linear correlation coefficients fol-
low the same spatial distribution as those obtained
with kriging but are nearly everywhere significantly
lower (typically with a difference of 0.2).

4) The long-term means are very well reproduced by
both downscaling methods.

5) The standard deviations are acceptably reconstructed
by the analog method but underestimated by kriging.

As a complementary remark it should be mentioned
that we conducted the same geostatistical study using,
instead of the pair (EOF1, EOF2) as basis vectors, the
basis (EOF1, EOF3), (EOF2, EOF3), and (EOF1, EOF2,
EOF3), respectively. The main conclusion is that the
most important structural information is carried by the
first two EOFs and that the spatial information carried
by the third and following EOFs decreases with the rank
of the EOF.

Another approach of the problem by means of uni-
versal kriging (Matheron 1969) was also attempted.
Concerning the linear correlation coefficients and the
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FIG. 6. Linear correlation coefficients between kriging reconstructions and observations (top)
and between analog method reconstructions and observations (bottom). Stations with a ‘‘W’’
have a white noise variogram model.

reproduction of the mean, the results we got were rel-
atively close to those described in this section. On the
other hand, we observed that the variance of the esti-
mated values was of the same order as the variance of
the observations. Unfortunately, the reproduction of the
variance is definitely not an intrinsic property of uni-
versal kriging and is probably due to extrapolation ef-
fects at the border of the data region.

b. Illustrations

In this section the functional form of the estimated
rainfall as a function of the amplitudes of the two lead-
ing SLP EOFs is illustrated. In the previous section the
rainfall associated with isolated points in the EOF space
was estimated by kriging and analog methods, but it is
also possible to perform this estimation at each node of
a regular grid in the whole low-dimensional EOF space,
thus yielding a numerical representation of the estimated
rainfall surface as a function of the two SLP EOF co-
ordinates.

In this section the results of the rainfall estimation in
the EOF space obtained by kriging, analog method, and,
for illustration purposes, a linear regression method are
presented. For these three methods the rainfall estima-
tion was performed on a 0.1 3 0.1 regular grid (see
Fig. 8) in the two-dimensional EOF space. We selected
the station Orense, which is located in the west of the
Iberian Peninsula (Fig. 1). As representative of the linear
regression models we chose the canonical correlation
analysis (CCA), which is quite often applied in the con-
text of statistical downscaling (von Storch et al. 1993;

Kushnir et al. 1997). Given two multivariate random
variables, CCA finds the linear combination of the com-
ponents of each of the variables that maximizes the
linear correlation (Bretherton et al. 1992). This property
has been used to construct an optimized linear down-
scaling model between the North Atlantic SLP field and
rainfall in the Iberian Peninsula (von Storch et al. 1993).
For comparison with the kriging and analog methods,
the SLP field has been projected only onto the two lead-
ing EOFs and the CCA was performed in this two-
dimensional space in the same fitting period as for the
other two methods.

The results are shown in Fig. 8. The kriging surface
is more regular than the analog one. This is a good
illustration of the underestimation of the variance by
kriging (see discussion in section 7). The analog surface
presents a variation in steps. This is not surprising ac-
cording to the definition of the analog method. This
method chooses as estimation of a point the closest one,
thus making it likely that several grid points are con-
nected with the same estimator. The representation of
precipitation estimated by the CCA method (this being
linear) is obviously a plane in EOF space. The CCA
finds the plane that would optimally fit the rainfall in
all stations as a function of the two leading SLP EOFs,
if the rainfall time series were standardized to unit var-
iance.

Figure 8 illustrates clearly the different behavior of
the three estimation methods. The analog method is
strongly nonlinear in the EOF space and its stepwise
variations are somewhat unrealistic. This could be
avoided by averaging over a neighborhood closest to
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FIG. 7. (a) Means of observations (solid lines), kriging reconstructions
(dotted lines), and analog method reconstructions (dashed lines). (b) Stan-
dard deviations of observations (solid lines), kriging reconstructions (dot-
ted lines), and analog method reconstructions (dashed lines).

the estimation point and not taking just the closest point.
But then the replication of the variance would have been
impaired. CCA tries to find just the best regression
plane, and the weakness of the method should be more
evident at the edges of the estimation region if the re-
lationship between rainfall and SLP is not linear. Krig-
ing produces a nice smoothed approximation of the an-
alog surface, and the nonlinear dependency of rainfall
on the SLP for large negative values of the EOF co-
ordinates is quite clear. An interesting point would be
to try to explain in physical terms this nonlinear de-
pendency.

6. Daily data

a. Data description

In this section both the kriging and analog down-
scaling procedures are tested with winter (DJF) daily
data. In the previous sections, we dealt with winter
(DJF) monthly data, whose variability is much weaker
than the variability of winter daily data. Also, the prob-
ability distributions of monthly and daily rainfall are
quite different.

The winter (DJF) daily precipitation data in the Ibe-
rian Peninsula were kindly supplied by the Instituto Na-
cional de Meteorologı́a (Madrid) but were unfortunately
available only for 10 stations. They covered the period
from 1 January 1969 to 31 December 1989. The winter
(DJF) SLP data are the same as those described in sec-
tion 2, except that we now consider the daily means.
We selected the same time period as for the precipitation
(winter days from 1 January 1969 to 31 December
1989).

For the specification of daily rainfall, it will be as-
sumed that the occurrence of precipitation at a day, d,
depends not only on the state of the atmosphere at the
same day d but also on the previous states of the at-
mosphere, as, for instance in Zorita et al. (1995). These
authors concluded that the persistence of the precipi-
tation process may be better captured by weather gen-
erators that take into account the evolution of the daily
SLP field and that using information from the SLP in
the roughly five previous days can improve the results.

Therefore, we tried to apply the kriging and analog
downscaling as described in the previous sections, but
with some modifications. First, the five leading SLP
EOFs were considered, since at daily timescales the var-
iability of the SLP field is spread over a wider range of
patterns. Second, the 3-day evolutions were also con-
sidered, so that instead of connecting the precipitation
observed at a day d with a point embedded in a two-
dimensional EOF space, the daily rainfall amount was
attached to a point in a 15-dimensional space whose
coordinates are defined as follows: the first five coor-
dinates are the first five EOF coordinates of the SLP
anomalies at day d, the following five coordinates are
the first five EOF coordinates of the SLP situation at
day d 2 1, and the last five coordinates are the first five
EOF coordinates of the SLP situation at day d 2 2.

In this way it was hoped that the relationship between
daily SLP and precipitation could be better captured.
But the price to be paid is double. First, the spatial
distribution of the data in the EOF space is much more
difficult to visualize because of the very high dimension
of the space; in other words, the variographical analyses
are going to be totally blind. And second, this will re-
quire, at least for kriging, a longer computation time.

b. Variographical analyses for daily rainfall

As we did for monthly data, we split the datasets into
two parts in order to perform a validation. The data
from 1969 to 1979 were reserved for the variographical
analyses, and we tried to reconstruct the rainfall time
series from 1980 to 1989.

The variographical analyses were performed in the
15-dimensional EOF time space. We found that the 10
experimental variograms could be divided into two
groups (Fig. 9 presents an example of each category).

1) Four variograms are fitted with a power model and
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FIG. 8. (a), (b) Three-dimensional and isolines plots of kriging; (c), (d) canonical correlation
analysis; and (e) analog method results for the station Orense. All interpolations were performed
on a 0.1 3 0.1 regular grid. The variogram model is a power model (with nugget effect). Note
that the axes of the three-dimensional views are inverted.

an additional nugget effect (see section 4 for the
corresponding definitions). The powers are close to
the value 2, which probably indicates the presence
of a very strong gradient in the (time augmented)
EOF space.

2) The six remaining experimental variograms present
a sill at small scale followed by a parabolic increase.
They were consequently fitted with a nested structure
composed of a nugget effect, an exponential, and a
power model:

|h|
ug(h) 5 C 1 C 1 2 exp 2 1 a|h|0 1 2[ ]b

with 0 , u , 2 and |h| ± 0. (11)

c. Results and comparison with the analog method

We analyzed the results of the kriging and analog
methods according to the three criteria (linear correla-
tion coefficients, means, and variances) previously used
for the monthly data, and, additionally, the replications
of the daily rainfall histograms and of the probability
of the storm interarrival times were also investigated.
The latter probability, p(t), is defined as the probability
that a certain period with no rain lasts at least t days.

It was found that the long-term means for all 10 sta-
tions are well reproduced by both the kriging and analog
methods (not shown). Furthermore, most of the linear
correlation coefficients obtained by kriging downscaling
are acceptable considering the noisy character of daily
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FIG. 9. Two examples of experimental variograms (dashed lines) with their associated variogram models (solid
lines) [(a) power and (b) exponential 1 power model]. We also show the data variance (dotted lines).

FIG. 10. Linear correlation coefficients after the time series have been smoothed by a 3-day
running mean between kriging reconstructions and observations (top) and between analog method
reconstructions and observations (bottom).

rainfall, especially in the western part of the Iberian
Peninsula. The maximum value reached is central-north-
ern Spain with a value equal to 0.34. The analog method
correlation coefficients are poor everywhere and are
never higher than 0.15. If the time series are smoothed
with a 3-day running-mean filter, the correlations ob-
tained by kriging are improved but those obtained by
the analog method remain low (Fig. 10).

However, the reconstructed variances are acceptable
for the analog method, but again kriging underestimates
the rainfall variance (not shown). Also the probability
distribution of daily rainfall is not satisfactorily repli-
cated. Figure 11 shows the histogram of daily rainfall
in Burgos, a station located in the center of the peninsula
(see Fig. 1). Kriging is not able to reproduce the prob-

ability distribution of daily rainfall, specially in the low-
er range (0–3 mm day21). This is due to the kriging
smoothing effect (see section 7) and is especially clear
in a severe underestimation of the number of dry days.
The analog method is able to replicate quite nicely the
probability distribution in the independent period, sug-
gesting that 10 yr of winter daily values are able to
sample sufficiently this high-dimensional EOF time
space (see section 7). Kriging also clearly underesti-
mates the frequency of dry periods for all time lengths,
whereas the analog method is able to produce time series
with the right distribution of the length of dry periods
(Fig. 12).

It can be mentioned here that the histograms of the
daily rainfall data are right-skewed so that a nonlinear
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FIG. 11. Histogram of daily rainfall at Burgos (center of the penin-
sula), as observed and simulated by the kriging and analog methods.

FIG. 12. Probability of length of dry periods at Burgos (center of
the peninsula), as observed and simulated by the kriging and analog
methods.

kriging method (Rivoirard 1990, 1994) could provide
some improvement.

7. Discussion

a. Variographical analyses and kriging results

The linear correlation coefficients between observed
and reconstructed rainfall obtained by both kriging and
the analog method enable us to distinguish between
three geographical areas.

1) The west and center of the Iberian Peninsula and
some part of the south of France, where the corre-
lations between estimations and observations are
good and decrease from west to east. It seems that
specification of precipitation from SLP seems to be
most efficient here.

2) The Mediterranean coast for which both methods are
poor. This can be explained by the weakening influ-
ence of North Atlantic sea level pressure on precip-
itation toward the east.

3) The north of Spain (Gulf of Biscay), which exhibits
low linear correlation coefficients, probably due to
orographic effects (;1500 m) along the coast.

The results are consistent with the comments to the
variographical analysis in section 4. There seems to be
a direct relation between the types of variogram models
fitted in section 4a and the values of the linear corre-
lation coefficients. In summary, we have roughly the
following scheme:

power model ⇔ good or very good estimation,

stationary model ⇔ poorer estimation,

pure nugget effect ⇔ poor estimation.

Hence the kriging results are consistent with the var-

iographical analyses. We thus note that the efficiency
of kriging downscaling is closely bound to the structure
of the rainfall data in the EOF space, for stations with
a strong rainfall gradient (Fig. 3) kriging is much more
successful than for stations with a flatter rainfall distri-
bution. Furthermore, the three geographical areas have
already been put forward during the variographical anal-
yses. It was found in section 4 that most western stations
and those at the center of the Iberian Peninsula (as well
as some stations in the south of France) were fitted with
power models, whereas the stations located around the
Mediterranean and in the north of Spain (Gulf of Biscay)
were fitted with bounded or pure nugget effect vario-
grams.

b. Replication of the mean and variance

We noticed in section 5 that the analog method is able
to reconstruct in a very realistic manner both in situ
observed mean and variance. Actually, this phenomenon
is due much more to a favorable spatial distribution of
the data under study than to an intrinsic property of the
method. If the space is sufficiently covered by the ob-
served data points, a random attribution of a rainfall
amount to the estimation points will automatically re-
produce the right mean and variance. However, if the
estimation points lie outside the cloud of observed data
points, the right estimation of the mean and the variance
is no longer obvious.

The performance of the analog method is thus closely
bound to the distribution in EOF space and the number
of estimation and observation points. In our case, for
example, there are fewer estimation points than obser-
vations, and all the data are relatively well spread over
the region. This explains the success of the method. We
could, however, imagine some much less favorable sit-
uations could occur, either because the estimation points
are clustered in a single region of space or because there
are simply less observations than estimation points.

With respect to kriging, the situation is somewhat
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different, since kriging does not provide any partition
of the space but uses the information carried by all the
observation points. Therefore, it can be expected a priori
that kriging might be more robust with respect to the
sampling density in EOF space, especially when the data
show a strong gradient in EOF space. However, if the
variogram can be approximated by a nugget effect, or
close to it, and the EOF space is scarcely sampled the
estimation will tend to become worse.

By construction, kriging is an unbiased estimator (see
the appendix), which means that the average error on
point estimations is zero over a large area. This is co-
herent with our results, since we found that the kriging
reproduced well the rainfall means. On the other hand,
the reproduction of the variance is not part of the criteria
searched for in kriging. It is indeed well known that
kriging ‘‘smoothes’’ and that the histogram of the values
estimated by kriging will display more values around
the mean but less extreme values than the histogram of
the observations, as observed in the histograms of the
daily rainfall amounts (Fig. 11). In general it is possible
to show (Chauvet 1994) that in the random function
model,

Var[Z*(x)] # Var[Z(x)] (12)

if the expectation of Z(x) is supposed to be equal to
zero (simple kriging). This last relation is called the
smoothing relation of kriging.

If the aim of the model is to preserve the variance of
the phenomenon, the smoothing effect can become un-
desirable (this is, for instance, the case if the output of
the statistical model is used to drive an ecosystem or
sector model).

To deal with the first objective, attention is drawn to
a different set of geostatistical techniques called con-
ditional simulations (Journel and Huijbregts 1978;
Armstrong and Dowd 1994). The idea of conditional
simulations consists in drawing another realization
{zs(x)} from the random function model Z and to impose
that this realization meets the experimental values at the
data locations xa; that is, we look for a conditionally
simulated zsc(x) satisfying

zsc(xa) 5 z(xa). (13)

Considering the ‘‘true’’ regionalized variable z at each
point of a dataset, the geostatistical approach consists
in interpreting z as a particular realization of a random
function Z. This random function is characterized by its
first two moments and its distribution function, which
are estimated, in a first step, from the experimental data.
After an anamorphosis into a Gaussian random function,
Y, in a second step, we draw a realization, {ys(x)}. This
realization has the advantage of being known at all
points x and not only at the experimental data points
xa, and it is also called a numerical model of the real
variable. We get in a third step the required conditional
simulation by writing

ysc(x) 5 y*(x) 1 [ys(x) 2 y*s(x)], (14)

where ys(x) represents any simulation (i.e., noncondi-
tional) of the random function Y under study, and y*s(x)
represents the result of kriging procedure applied to
ys(x) with the initial data configuration xa of the ob-
servations. In the fourth step, the conditional simulation
is back-transformed into zsc(x).

The requirements of a conditional simulation are sat-
isfied and, in particular, this entails that for all xa,

zsc(xa) 5 z(xa). (15)

By construction, the variance of the simulated points
should be identical to the variance of observations. On
the other hand, the price to be paid is that at each point
x, the simulated value zsc(x) is not the best possible
estimator of z(x). Hence, though the simulation values
zsc(x) better reproduce the variance of the real data, the
estimations z*(x) are ‘‘closer’’ (in the least squares
sense) to the real values z(x). A similar situation has
been found in the context of estimation by linear re-
gression models (Bürger 1996).

Thus, in general, an optimal estimation and the rep-
lication of the variance seem not to be compatible. This
can be illustrated as follows: a statistical model for one
predictor y and a multivariate predictand x can be writ-
ten in general as

y(t) 5 F [x(t)] 1 e(t), (16)

where e describes the part of y that cannot be taken into
account by x. In our case y represents local rainfall and
x represents the SLP field. But the SLP field cannot
explain all of the rainfall variability; there will always
be a part of the rainfall variability due to local noise,
such as measurement errors, convection, localized
winds, that is totally or to a great extent independent
of the large-scale SLP. Therefore any statistical model
in a similar situation as this (i.e., linking two physically
distinct variables) will tend to replicate a smaller var-
iance than observed.

This comment does not apply to statistical models
that incorporate stochastically the observed local noise
e, such as the analog method. By sampling from a pool
of past observations, the analog method introduces this
noise implicitly. This makes the analog method worse
than other ‘‘deterministic’’ methods in specifying the
rainfall at time t, y(t), since the stochastically introduced
noise for one estimation at time t, e(tana), will not be
the same as the observed noise at time t, e(t); but on
the other hand the analog method will reproduce the
right variance.

8. Conclusions

The main goal of this paper was to conceive and test
a downscaling procedure based on the geostatistical
technique called kriging. Noteworthy is the application
of the kriging technique in a space without geographical
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meaning. Over the last half of this century, geostatistics
has found many new domains of application, the latest
to date being perhaps in the field of electromagnetism
(Lefèbvre et al. 1996; Walter and Pronzato 1997), where
kriging is also applied in a nongeographical space.

From a technical point of view, it was found that both
kriging and the simpler analog method were able to
reproduce in a very realistic manner both rainfall evo-
lution and observational means at most of the stations
under study. On the other hand, kriging underestimates
the observation variance because of a well-known
smoothing effect. Furthermore, it was pointed out that
the results of kriging may be more robust than those of
the analog method to the distribution of the observations
in EOF space and the number of the observational data
points.

We checked the validity of both the kriging and an-
alog downscaling approaches by trying to downscale
winter daily precipitation from daily SLP. It was con-
cluded that kriging was able to replicate better the time
evolution of rainfall, whereas the analog method yielded
a more realistic variance and probability histograms. In
the corresponding section, we performed variographical
analyses and kriging in a 15-dimensional space, which
is a very unusual situation for geostatistics.

We also found that the performance of the down-
scaling based on kriging seems to depend strongly on
the distribution of the local variable, for example,
monthly versus daily rainfall, at least in the normal krig-
ing setting used in this paper. This property may hinder
the application of the method to other environmental
variables that are usually nonnormally distributed. In
those cases other kriging techniques that do not rely
heavily on the probability distribution could be worth
applying.

Thus, the geostatistical downscaling process designed
in this study, using North Atlantic SLP data as input
and yielding Iberian precipitation estimations as output,
was successfully validated by reconstructing precipita-
tion observations. It could hence be possible, as the last
step of downscaling, to apply this new downscaling
scheme to simulated SLP data derived from a GCM
climate change experiment.
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APPENDIX

Kriging Equations

Definition. The random function Z is said to be sec-
ond-order stationary if for every point x

1) the mean E[Z(x)] exists and does not depend on x,

E[Z(x)] 5 m, and (A1)

2) the covariance between Z(x) and Z(x 1 h) exists and
depends only on the separation vector h,

Cov[Z(x), Z(x 1 h)] 5 C(h). (A2)

In this situation the variogram is bounded and, con-
versely, only when the variogram is bounded does a
corresponding covariance function exists. With second-
order stationarity, it follows that

Var[Z(x)] 5 Cov[Z(x), Z(x)] 5 C(0), and

1
g(h) 5 Var[Z(x 1 h) 2 Z(x)] 5 C(0) 2 C(h).

2
(A3)

In the general case the variogram is unbounded and an
intrinsically stationary random function model is adopt-
ed, where the differences Z(x 1 h) 2 Z(x) are assumed
second-order stationary, while Z(x) itself is not neces-
sarily stationary.

Now let us discuss the construction of an estimate,
Z*. We are dealing with a minimization without con-
straint, when the random function Z is assumed to have
a zero mathematical expectation. However, this is an
exceptional case, and in most cases the expectation, as-
sumed constant in the second-order stationary model,
is unknown in the intrinsically stationary model. Con-
sequently, in order to ensure that the estimation error
Z*(x) 2 Z(x) will satisfy

E[Z*(x) 2 Z(x)] 5 0, (A4)

we have to impose the constraint

N

l 5 1. (A5)O a
a51

This constraint ensures the unbiased behavior of the
kriging estimator and is called the universality condi-
tion. Thus the variance of the estimation error Z*(x) 2
Z(x) can then be written as

2Var[Z*(x) 2 Z(x)] 5 E{[Z*(x) 2 Z(x)] }
N

5 2 l g(x 2 x )O a a
a51

N N

2 l l g(x 2 x ) (A6)O O a b a b
a51 b51

by simple application of the general formula. It is a
quadratic equation, according to the unknown coeffi-
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cients la that have to be minimized. The kriging prob-
lem amounts then to minimizing a quadratic form under
a linear constraint. We obtain a system of linear equa-
tions:

N
2 l g(x 2 x ) 1 m 5 2g(x 2 x )O b a b a

b51 (A7)
N l 5 1.O b

 b51

The unknowns of the system are the weights la and the
Lagrangian multiplier m.

The kriging variance is the minimum of Var[Z*(x)2s k

2 Z(x)] and is given by

N

2s 5 l g(x 2 x ) 2 m, (A8)Ok a a
a51

where the la and m are the solutions to the kriging
system.

A weaker condition than second-order stationarity is
given by the intrinsic without-drift condition; the func-
tion Z is said to be intrinsic if for any vector h the
increment Z(x 1 h) 2 Z(x) is second-order stationary.
The function m(h) 5 E[Z(x 1 h) 2 Z(x)] is then called
the drift and verifies the linear relation m(h 1 h9) 5
m(h) 1 m(h9). Furthermore, when the drift function is
supposed equal to zero, the random function is said to
be intrinsic without drift. This important assumption is
made here. Therefore, for any vector h the increment
Z(x 1 h) 2 Z(x) has a finite variance that does not
depend on x, and we get

1
g(h) 5 Var[Z(x 1 h) 2 Z(x)]

2

1
25 E{[Z(x 1 h) 2 Z(x)] }. (A9)

2

Note that the second-order stationarity implies the in-
trinsic condition but that the converse is not true. How-
ever, by a mathematical transformation it is possible to
show that the resulting kriging equations and the kriging
variance are given by the same equations as in the sec-
ond-order stationary case.

Under quite reasonable conditions kriging estimation
has interesting properties.

R By construction, kriging is an unbiased estimator, that
is, the estimation error has zero expectation in the
probabilistic model. When considering the regional-
ized variable, this means that the average error on
point estimations is zero over a large area.

R Kriging is an exact interpolator, which means that
when we perform kriging at a sampling point, the
kriging system will return the sample value as the
estimator (and a kriging variance of zero).
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