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ABSTRACT

This paper deals with the conditional simulation of a Cox process in a family of

target blocks given samples of various supports. Here it has been assumed that the

distribution of the potential over all samples and blocks factorize according to the

following graphical model. A node is associated to each sample and target block.

Each sample node is connected to the node of the smallest sample, or block, that

contains it. All block nodes are joined by edges. This graphical model possesses

conditional independence relationships that can be exploited by a metropolized

version of the Gibbs sampler to produce fast conditional simulations. This model

can be seen as a generalisation of the discrete gaussian model traditionally used

for congruent samples.

INTRODUCTION

Multiple sample support is extremely common within the mineral resource industry
as different sampling campaigns are often designed with different objectives,
resulting in sample data with different support sizes, shapes and configurations.
Thus to incorporate all data for both estimation and uncertainty exercises is a
challenging problem.

The present paper deals with the conditional simulation of aCox process (1955) in
a family of target blocks. Provided that the random intensity function, orpotential,
of the samples and the blocks satisfy some conditional independence relationships,
an iterative simulation algorithm can be set up to accommodate all conditioning
data. A graphical model (Lauritzen, 2001; Jordan, 2004) is introduced to specify
these independence relationships in a fully consistent way. This model can be seen
as a generalisation of the discrete gaussian model traditionally used in geostatistics
for the non-linear estimation of local reserves starting from congruent samples
(Matheron, 1976; Rivoirard, 1994; Chilès and Delfiner, 1999; Emery, 2007).
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This paper starts with a summary of the salient features of the Cox process, then
presents a graphical model that factorizes the joint conditional distribution of
the potential of the blocks and samples, leading to a simple and fast conditional
simulation algorithm of the Cox process. The relationshipsbetween this graphical
model and the discrete gaussian model are then established.The proposed
methodology is finally demonstrated using data emanating from a diamond placer
deposit to estimate confidence limits for block concentrations.

METHODOLOGY

Presentation of the problem

A Cox process is a Poisson point process with a random intensity function, or
potential. This potential reflects the propensity for some regions to contain more
points than others. Figure 1 shows two realisations of a Cox process with their
underlying potential.

Figure 1:Two realisations of a Cox process, demonstrating the differing location of clusters,
which contrasts to the standard Poisson point process.

Let Z = (Zx, x ∈ IRd) be the random function that denotes the potential of the Cox
process. The potential associated to each domainv is denoted by

Zv =

∫

v
Zx dx v ⊂ IRd

The Cox process is characterized by the following conditional property. Given
Z, the number of points within pairwise disjoint domainsv1, ...,vn are mutually
independent Poisson variables with respective parametersZv1, ...,Zvn . These does
not mean that these variables are effectively independent because the potential
conveys its own structure to the Cox process. For instance, the covariance between
the number of points in two domainsv andw is the sum of two terms

Cov{Nv,Nw} = Cov{Zv,Zw}+ E{Zv∩w}

The first one is derived from the covariance of the potential whereas the second one
stems from the Poisson seeding of the points.

The main concern of this paper is the conditional simulationof the number of points
(Nb,b ∈ B) in a family of pairwise disjoint target blocks given the number of points
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(Ns = ns,s ∈ S) in a population of samples. To address this problem, it is convenient
first to generate the potential of the target blocks conditional to the content1 of
the samples, and second the content of the target blocks given their potential. As
the second step is straightforward (it merely amounts to simulating independent
Poisson distributions), only the first step is discussed.

In principle, the first step only requires the conditional distribution of the potential
of the target blocks to be considered. In practice, however,it is more advantageous
to consider the joint conditional distribution of the potential of the target blocks
together with the samples. The probability density function (pdf) of this distribution
can be written as

f (zB∪S | nS) ∝ f (zB) f (zS\B | zB) p(nS | zS) (1)

Note that this pdf is specified up to a constant, the typical situation where
the Metropolis-Hasting algorithm is required for simulation. Note also that the
conditional generation of the sample potential may be difficult, especially if the
samples are numerous or have different supports. The graphical model that is to be
introduced in the next section brings significant simplifications.

A graphical model for the potential

Let us consider a family of samples and blocks, as shown in Figure 2.

b2 b3

s3

s5

b1 = s1

s4

s2 s6

Figure 2: A family of blocks and samples. Note thats5 includess2 ands6

The mutual arrangement of these blocks and samples is fairlygeneral, but with a
few limitations. Blocks are pairwise disjoint; each sampleis to be within a single
block; two samples of the same block are either disjoint or ordered by inclusion;
and some samples may coincide with complete blocks (e.g. production blocks).

Subject to these limitations, it is possible to represent the arrangement of blocks
and samples using graph theory. A graph is specified by a set ofnodes (or vertices)
and a set ofedges joining pairs of nodes. In our context, a node as assigned to each
block and sample. each pair of block nodes is connected by an edge. Each sample
node is connected to the node of the smallest sample (or block) that contains it (see
Figure 3). This graph is called aninclusion graph.

1Throughout this paper, the content of a domain refers to the number of points within it.
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b1 = s1
b2

b3

s5

s3 s2 s6 s4

Figure 3: The inclusion graph specifying the association ofblocks and samples of Figure 2

By assigning the potential of each sample and block to the node that represents
it, the inclusion graph can be used to model the joint distribution of all
potentials through a consistent set of conditional independence relationships. These
relationships can be described as follows. The potential ofsamples and blocks
is said to bemarkovian if for any triplet of disjoint subsets of nodes(A,B,C)
such thatC separatesA and B2 the potentialZA of A and the potentialZB of
B are conditionally independent given the potentialZC of C (Lauritzen, 2001).
For example,Zs4 and Zs6 are conditionally independent givenZb1 (as any path
betweens4 and s6 passes throughb1); however they may not be conditionally
independent givenZb2 (as a path betweens4 ands6 exists that bypassesb2, namely
s4−b3−b1− s5− s6).

Under this markovian assumption, the conditional distribution of the potential of
the samples can be factorized. Indeed, letSb be the family of all samples contained
in blockb (with possiblyb itself). Note that each block node separate the nodes of
its own samples from the other sample nodes, and even from theother block nodes.
Accordingly, conditional independence applies and gives

f (zS\B | zB) = ∏
b∈B

f (zSb\b | zb) (2)

On the other hand, the markovian assumption is not required to factorize the
conditional distribution of the number of stones per sample:

p(nS | zS) = ∏
b∈B

p(nSb | zSb) (3)

Based on the factorizations (2) and (3), formula (1) becomes

f (zB∪S | nS) ∝ f (zB) ∏
b∈B

f (zSb\b | zb) p(nSb | zSb) (4)

A metropolized version of the Gibbs sampler can be used to simulate the pdf
specified by (4). At each iteration, a blockb is selected at random. Propositional

2The term ”C separatesA andB” means that any path between a node ofA and a node ofB necessarily
passes through a node ofC.
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values ¯zSb∪b are generated for the potential of blockb and its samples. They replace
the current potentials with probability

α =
p(nSb | z̄Sb)

p(nSb | zSb)

Here is the corresponding algorithm:

(i) for each b ∈ B generate zb ∼ f and zSb\b ∼ f (· | zb);

(ii) select b ∼ U (B). Generate z̄b ∼ f (· | zB\b) and z̄Sb\b ∼ f (· | z̄b);

(iii) generate u ∼ U . Put zSb = z̄Sb if p(nSb | z̄Sb) > u p(nSb | zSb);

(iv) goto (ii).

There is no specific rule for generating ¯zb ∼ f (· | zB\b) of step (ii). This must be
designed on a case by case basis. Regarding the generation ofzSb\b ∼ f (· | zb) of
steps (i) and (ii), it can be observed that the inclusion graph associated with block
b and its samples is a tree, the root of which is preciselyb. This implies the new
factorization

f (zSb\b | zb) = ∏
s∈Sb\b

f (zs | zs∗)

wheres∗ denotes theparent support of s. This is the smallest sample containing
s, if such a sample does exist, orb itself otherwise. Accordingly, this distribution
can be sequentially simulated by starting with the biggest samples and terminating
with the smallest ones.

It remains to see how to computep(nSb | zSb) of step (iii). This becomes analytically
tractable when pairwise disjoint samples are considered instead of those ofSb. For
each samples∈ Sb, lets∗ be the part ofs free of smaller samples, i.e.s∗ = s\∪s′(s s′.
PutS∗ = {s∗}, and note thatZSb = zSb if and onlyZS∗ = zS∗ , as well asNSb = nSb if
and onlyNS∗ = nS∗ , zS∗ andnS∗ being defined as

zs∗ = zs − ∑
s′(s

zs′ 1s′∗=s ns∗ = ns − ∑
s′(s

ns′ 1s′∗=s s∗ ∈ S∗

As a consequence one can write

p(nSb | zSb) = p(nS∗ | zS∗) = ∏
s∗∈S∗

p(ns∗ | zs∗) = ∏
s∗∈S∗

exp(−zs∗) z
ns∗
s∗ /ns∗ !

The next section exhibits an example of a model where conditional independence
properties are encountered.

A generalization of the discrete gaussian model

In this section the potentialZ is assumed to be an anamorphosed standardized
gaussian random function, that is

Zx = ϕ(Yx) x ∈ IRd
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The average potential (respectively, the average gaussianpotential) over a domain
v is denoted byZ(v) (resp.Y (v)):

Z(v) =
Zv

|v|
=

1
|v|

∫

v
Zx dx Y (v) =

Yv

|v|
=

1
|v|

∫

v
Yx dx

Let ẋ be a uniform point inv. The joint distribution of
(

Yẋ,Y (v)
)

is known to be
hermitian, i.e. a mixture of bigaussian distributions (Matheron, 1976). Following
Emery (2007), the discrete gaussian model boils down to approximating this
distribution by a bigaussian distribution. Its correlation coefficientr is positive and
satisfiesr2 = Var{Y(v)}. Moreover Cartier’s formulaZ(v) = E{Zẋ | Z(v)} implies

Z(v) = ϕr

(

Y (v)
r

)

with

ϕr(y) =

∫

IR
ϕ(ry +

√

1− r2u)g(u)du

This is shown diagramatically in Figure 4:

ϕ

Z(ẋ) Z(v)

Y (v)
r

Y (ẋ)

ϕr

Br

Figure 4: Construction of the discrete gaussian model. The joint distribution of
(

Y (ẋ),Y (v)
)

is
approximated by a bigaussian distribution, the correlation coefficient of which is the standard
deviation ofY (v)

There is a way to extend this construction. The first step is toreplace each sample
s by a random sample ˙s, uniformly located within its parent support ˙s∗. This
maintains the inclusion graph of blocks and samples. Then the following two
assumptions are made:

(i) the random vector
(

Y (v),v ∈ Ṡ∪B
)

is markovian;

(ii) for each samples ∈ S\B, the distribution of
(

Y (ṡ),Y (ṡ∗)
)

is bigaussian with
correlationρs,s∗ = rs∗/rs, wherer2

s = Var{Y (s)} andr2
s∗ = Var{Y (s∗)}.

Note that this construction does not affect the distribution of
(

Y (b),b ∈ B
)

. It is
merely aimed at approximating the multivariate distribution of

(

Y (v),v ∈ Ṡ∪B
)

by
a factorization according its inclusion graph:

g(yB∪S) = g(yB)g(yS\B | yB) = g(yB) ∏
b∈B

g(ySb\b | yb) = g(yB) ∏
b∈B

s∈Sb\b

g(ys | ys∗)
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Let v andv′ be two different samples or blocks ofṠ∪B. Starting from the previous
formula and resorting to a classical result3, it is not difficult to establish that
(

Y (v),Y (v′)
)

follows a bigaussian distribution. Moreover, its correlation is

ρv,v′ =
n

∏
i=1

ρvi−1,vi

wherev = v0,v1, ...,vn = v′ is the shortest path betweenv andv′ along the inclusion
graph. This extends the properties of the discrete gaussianmodel designed for
the non-linear prediction of reserves in the case of congruent samples (Chilès and
Delfiner, 1999).

CASE STUDY

The marine diamond placer deposit off the West coast of Namibia has been
successfully mined for the last 15 years (see Figure 5), and presents a challenging
environment for grade estimation and risk appraisal.

Luderitz

Oranjemund

0 10050

Kilometers

NAMIBIA

SOUTH AFRICA

ATLANTIC OCEAN

Atlantic 1

Figure 5:Geographical location of the marine diamond deposit (Atlantic 1).

As a consequence of the challenging marine environment and different geological
terrains, sampling is often conducted with different sampling drills resulting
in differing sample sizes. Furthermore, as the production data is collected
on an individual block basis, these results can also be utilised for grade
estimation providing the consequences of sample support sizes are correctly
taken into account by the estimation technique. It has also become essential
that meaningful confidence limits associated with block grades are established to
produce achievable mine plans.

The multi-support simulation technique presented in this paper has been developed
to calculate the confidence limits associated with the gradeestimates. A limitation
of the simulation methodology described, is that the samples must be exactly

3Let X ,Y and Z be three standard gaussian variables. Suppose that (i) the distribution of (X ,Y )
is bigaussian with correlationρX ,Y , (ii) the distribution of(Y,Z) is bigaussian with correlationρY,Z,
(iii) X andZ are conditionally independent givenY . Then the distribution of(X ,Z) is bigaussian with
correlationρX ,Z = ρX ,Y ρY,Z .
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divisible into the associated block dimensions. As this is generally not the case, the
compensation technique proposed by Ferreira and Lantuéjoul (2007) can be used
to ensure the re-shaping and re-sizing of samples to the appropriate dimensions.

In this case study, a sample dataset comprising small singledrillholes and larger
production blocks of various sizes was used. The histogram of the drill samples
can be fitted by a negative binomial distribution with mean 1.167 and variance
15.623. The sample variogram model consists of a nugget effect (6.536) and a
spherical model with sill 9.087 and range 120m.

By establishing the relationships between the various samples using the graphical
model as described above, the simulation model could be developed and numerous
realisations of the placer deposit produced. The simulation was both visually
and statistically validated to ensure compatibility to theconditioning data and the
geological model of the deposit. Examples of typical realisations are presented in
Figure 6.

Figure 6:Four conditional simulations of the Cox process. Samples and production blocks
are displayed in black.

An exercise of 100 simulations was carried out, from which the mean and standard
deviation of the all the simulation realisations could be calculated (see Figure 7).

The simulation mean could also be compared the kriged estimates4 which showed

4Calculated from mixed support kriging
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Figure 7:Mean and standard deviation computed starting from 100 conditional simulations.

a strong correlation (see Figure 8).
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Figure 8:Scatter diagram between the mean of simulation and mixed support kriging
estimates.

Confidence limits for the estimated grade have also been calculated (Figure 9) so
that the relative confidence of individual blocks can be established to guide the
risk profile for mine planning. An analysis of the confidence limits shows both
the contribution of the sampling data and the relative contribution of the differing
support sizes.

DISCUSSION

In this paper, an algorithm for the conditional simulation of the Cox process has
been developed by transposing the inclusion relationshipsbetween samples and
blocks in terms of a graph. Based on this graph, a consistent set of conditional
independence assumptions on the potential of samples and blocks is introduced.
Then the multivariate distribution of the potential factorizes, which leads to a
significant simplification of its simulation algorithm (conditional or not), as well
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Figure 9:Quantiles 10% and 90%.

as a much faster running time.

One can question about the validity of the conditional independence assumptions
made. Although it is difficult to determine their veracity, these assumptions are
reasonably weak, as long as the samples are small w.r.t. the blocks. Of course,
this is not true for samples that are production blocks, but such samples are treated
as blocks and thereby are processed differently by the simulation algorithm. It
should be pointed out that these assumptions are exactly those of the discrete
gaussian model in the case where the potential is an anamorphosed gaussian
random function.

Whereas the graphical model approach adopted here has been used here for the
conditional simulation of a particular point process, it isbeyond doubt that it has
a much wider scope. It can handle many other types of mineralisation and can be
applied not only to simulation but also to interpolation. Itwould be interesting to
investigate the benefits of such an approach in the multivariate context.
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