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ABSTRACT
This paper deals with the conditional simulation of a Cox process in a family of

target blocks given samples of various supports. Here it has been assumed that the
distribution of the potential over all samples and blocks factorize according to the
following graphical model. A node is associated to each sample and target block.
Each sample node is connected to the node of the smallest sample, or block, that
contains it. All block nodes are joined by edges. This graphical model possesses
conditional independence relationships that can be exploited by a metropolized
version of the Gibbs sampler to produce fast conditional simulations. This model
can be seen as a generalisation of the discrete gaussian model traditionally used

for congruent samples.

INTRODUCTION

Multiple sample support is extremely common within the maheesource industry
as different sampling campaigns are often designed witfergifit objectives,
resulting in sample data with different support sizes, ssagnd configurations.
Thus to incorporate all data for both estimation and und@staexercises is a
challenging problem.

The present paper deals with the conditional simulation@b= process (1955) in
a family of target blocks. Provided that the random intgnisihction, orpotential,
of the samples and the blocks satisfy some conditional ied@gnce relationships,
an iterative simulation algorithm can be set up to accomrneeh conditioning
data. A graphical model (Lauritzen, 2001; Jordan, 2004htoduced to specify
these independence relationships in a fully consistent Waig model can be seen
as a generalisation of the discrete gaussian model traditioused in geostatistics
for the non-linear estimation of local reserves startingnfrcongruent samples
(Matheron, 1976; Rivoirard, 1994; Chilés and Delfiner, @9@mery, 2007).
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This paper starts with a summary of the salient features@fQbx process, then
presents a graphical model that factorizes the joint cgortit distribution of

the potential of the blocks and samples, leading to a simpdefast conditional

simulation algorithm of the Cox process. The relationshigsveen this graphical
model and the discrete gaussian model are then establishidte proposed
methodology is finally demonstrated using data emanatmg & diamond placer
deposit to estimate confidence limits for block concentragi

METHODOLOGY

Presentation of the problem

A Cox process is a Poisson point process with a random iriyefgiction, or
potential. This potential reflects the propensity for some regionsaiat@in more
points than others. Figure 1 shows two realisations of a Goxgss with their
underlying potential.

Figure 1:Two realisations of a Cox process, demonstrating the diffiglocation of clusters,
which contrasts to the standard Poisson point process.

LetZ = (Z, x € IRY) be the random function that denotes the potential of the Cox
process. The potential associated to each domwilenoted by

ZV:/Zde vC IR
Vv

The Cox process is characterized by the following cond#iqeroperty. Given
Z, the number of points within pairwise disjoint domamws...,v, are mutually
independent Poisson variables with respective paramaggrs., Zy,. These does
not mean that these variables are effectively independecause the potential
conveys its own structure to the Cox process. For instahes;dvariance between
the number of points in two domainsandw is the sum of two terms

Cov{Ny, Ny} = Cov{Z,Zy} + E{Zyrw}

The first one is derived from the covariance of the potentla¢igas the second one
stems from the Poisson seeding of the points.

The main concern of this paper is the conditional simulatitthe number of points
(Np, b € B) in a family of pairwise disjoint target blocks given the nuenlof points
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(Ns=ns,s€ S) in a population of samples. To address this problem, it isenient
first to generate the potential of the target blocks condiido the contertof
the samples, and second the content of the target blocks thie# potential. As
the second step is straightforward (it merely amounts taukiting independent
Poisson distributions), only the first step is discussed.

In principle, the first step only requires the conditionatdbution of the potential
of the target blocks to be considered. In practice, howeéisrmore advantageous
to consider the joint conditional distribution of the paiahof the target blocks
together with the samples. The probability density func{jedf) of this distribution
can be written as

f(zaus|ns) U f(z8) f(zs\8 | 28) P(Ns | z5) (1)

Note that this pdf is specified up to a constant, the typichlasion where
the Metropolis-Hasting algorithm is required for simutati Note also that the
conditional generation of the sample potential may be diffjeespecially if the
samples are numerous or have different supports. The gralphbdel that is to be
introduced in the next section brings significant simplifizas.

A graphical model for the potential

Let us consider a family of samples and blocks, as shown iarEig.

B

bi=¢s by b

SQ|56

Figure 2: A family of blocks and samples. Note tisaincludess, andss

The mutual arrangement of these blocks and samples is fg@reral, but with a
few limitations. Blocks are pairwise disjoint; each samigléo be within a single
block; two samples of the same block are either disjoint dieced by inclusion;
and some samples may coincide with complete blocks (e.glugtmn blocks).

Subject to these limitations, it is possible to represeatatrangement of blocks
and samples using graph theory. A graph is specified by a seidet (or vertices)
and a set oédgesjoining pairs of nodes. In our context, a node as assigneddb e
block and sample. each pair of block nodes is connected byga é&ach sample
node is connected to the node of the smallest sample (orYloakcontains it (see
Figure 3). This graph is called anclusion graph.

1Throughout this paper, the content of a domain refers to tietrer of points within it.
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b1 =95 b3
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Figure 3: The inclusion graph specifying the associatioblotks and samples of Figure 2

By assigning the potential of each sample and block to thesribdt represents
it, the inclusion graph can be used to model the joint distidn of all
potentials through a consistent set of conditional ind€elpece relationships. These
relationships can be described as follows. The potentialanfiples and blocks
is said to bemarkovian if for any triplet of disjoint subsets of node€#\,B,C)
such thatC separatesA and B? the potentialZa of A and the potentialg of

B are conditionally independent given the poten#al of C (Lauritzen, 2001).
For example Zs, and Zs, are conditionally independent givefy, (as any path
betweens; and sz passes through;); however they may not be conditionally
independent gived, (as a path betwees} andss exists that bypassés, namely
S —b3—b1—s5—s5).

Under this markovian assumption, the conditional distitdou of the potential of
the samples can be factorized. IndeedSgbe the family of all samples contained

in blockb (with possiblyb itself). Note that each block node separate the nodes of
its own samples from the other sample nodes, and even frootliee block nodes.
Accordingly, conditional independence applies and gives

f(zs8]28) |_Lf Z5\b | %) 2)

On the other hand, the markovian assumption is not requivefhdtorize the
conditional distribution of the number of stones per sample

= 3
p(ns| zs) bEL p(ng, | zs,) (3)

Based on the factorizations (2) and (3), formula (1) becomes

f(zaus|ns) O f(zs |_Lf Zs\b | ) P(Ns, | Z5,) (4)

A metropolized version of the Gibbs sampler can be used talsiim the pdf
specified by (4). At each iteration, a blobkis selected at random. Propositional

2The term C separateé andB” means that any path between a nodéaid a node oB necessarily
passes through a node©f
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valueszg b are generated for the potential of bldeknd its samples. They replace
the current potentials with probability

_ P(ns, [ 75)
p(Ns, | zs,)
Here is the corresponding algorithm:

(i) for each b € B generatez, ~ f and zg\p ~ f(- | 2);

(ii) select b~ 7% (B). Generate z, ~ f(- | za\p) and zg\p ~ (- [ Z);
(iii) generate u ~ % . Put z, = g, if p(ng, | z,) > up(ng, | zs,);
(iv) goto (ii).

There is no specific rule for generatiag~ f(- | zg\p) of step (ii). This must be
designed on a case by case basis. Regarding the generatign,ef f(- | z,) of

steps (i) and (i), it can be observed that the inclusion ragsociated with block
b and its samples is a tree, the root of which is precigel\fhis implies the new

factorization
f(zg\b | 2) = |_L f(zs]zs)
seS\b

wheres* denotes thearent support of s. This is the smallest sample containing
s, if such a sample does exist, lpitself otherwise. Accordingly, this distribution
can be sequentially simulated by starting with the biggastges and terminating
with the smallest ones.

Itremains to see how to compuyténs, | zs,) of step (iii). This becomes analytically
tractable when pairwise disjoint samples are considersg@au of those d,. For
each samplec S, lets. be the part o free of smaller samples, i.8, = S\ UycsS.
PutS, = {s.}, and note thaZg = zg if and onlyZs = zs , as well adNg, = ng if
and onlyNs, = ng,, zs, andng, being defined as

ZS*:ZS_SZZSlls,*:S ns*:ns—sz nsllsl*:S 8*65*
Cs cs

=

As a consequence one can write

P(ns, [ 2Zs,) = P(ns, [ zs.) = |_LID Ns, | .) FLEXD(—Z&) 2 /s, !

The next section exhibits an example of a model where camditindependence
properties are encountered.

A generalization of the discrete gaussian model

In this section the potentia is assumed to be an anamorphosed standardized
gaussian random function, that is

Z=0(Y,) xelRd
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The average potential (respectively, the average gaupsi@mtial) over a domain
vis denoted byZ(v) (resp.Y(v)):

dx Y(v)= /
IVI IVI/ IVI vl

Let X be a uniform point inv. The joint distribution of(Yx,Y(v)) is known to be
hermitian, i.e. a mixture of bigaussian distributions (Nxon, 1976). Following
Emery (2007), the discrete gaussian model boils down to cequpiating this
distribution by a bigaussian distribution. Its correlatimefficientr is positive and
satisfieg? = Var{Y(v)}. Moreover Cartier's formulZ(v) = E{Zx | Z(v)} implies

Z() = ¢, (@)

r

with

= [oly+Vi-ruguau

This is shown diagramatically in Figure 4:

Z(%) Z(v)

Figure 4: Construction of the discrete gaussian model. Tiet jdistribution of (Y (x),Y(v)) is
approximated by a bigaussian distribution, the corretatoefficient of which is the standard
deviation ofY (v)

There is a way to extend this construction. The first step repéace each sample
s by a random sampls, uniformly located within its parent suppost.” This
maintains the inclusion graph of blocks and samples. Thenfdhowing two
assumptions are made:

(i) the random vecto(Y (v),v € SUB) is markovian;

(ii) for each samples € S\B, the distribution of(Y ($),Y($+)) is bigaussian with
correlationps s = rs+/rs, wherer2 = Var{Y(s)} andrZ = Var{Y(s«)}.

Note that this construction does not affect the distributi (Y (b),b € _B). It is
merely aimed at approximating the multivariate distribatof (Y(v),v e SuU B) by
a factorization according its inclusion graph:

9(ysus) = 9(Y8)9(ysis | Y8) =9(¥8) [ 19(¥Ys,\0 [ Yb) = 9(y8) [] 9(Ys | ys)
t!;L sels_ol\b
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LetvandV be two different samples or blocks 8f)B. Starting from the previous
formula and resorting to a classical resulit is not difficult to establish that
(Y(v),Y(V)) follows a bigaussian distribution. Moreover, its corraatis

Puy = ilj Pyi_1v

wherev =g, Vs, ...,Vh = V is the shortest path betweerandVv along the inclusion
graph. This extends the properties of the discrete gauss@iel designed for
the non-linear prediction of reserves in the case of congrsamples (Chiles and
Delfiner, 1999).

CASE STUDY

The marine diamond placer deposit off the West coast of Nertitas been
successfully mined for the last 15 years (see Figure 5), assepts a challenging
environment for grade estimation and risk appraisal.

‘J

>z
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Atlantic 1% » j }/
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ATLANTIC OCEAN —

Figure 5:Geographical location of the marine diamond deposit (Attah).

As a consequence of the challenging marine environment diedesht geological
terrains, sampling is often conducted with different sangpldrills resulting
in differing sample sizes. Furthermore, as the productiatads collected
on an individual block basis, these results can also besetilifor grade
estimation providing the consequences of sample supppes sare correctly
taken into account by the estimation technique. It has aEmime essential
that meaningful confidence limits associated with blockdgsaare established to
produce achievable mine plans.

The multi-support simulation technique presented in thisgy has been developed
to calculate the confidence limits associated with the gestienates. A limitation
of the simulation methodology described, is that the sampheist be exactly

SLet X,Y and Z be three standard gaussian variables. Suppose that (i)istiéation of (X,Y)
is bigaussian with correlatiopy v, (i) the distribution of(Y,Z) is bigaussian with correlatiopy z,
(i) X andZ are conditionally independent givéh Then the distribution ofX,Z) is bigaussian with
correlationpy z = px,yPy,z-
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divisible into the associated block dimensions. As thisiserally not the case, the
compensation technique proposed by Ferreira and LantLig607) can be used
to ensure the re-shaping and re-sizing of samples to theppate dimensions.

In this case study, a sample dataset comprising small sdrdleoles and larger
production blocks of various sizes was used. The histogratheodrill samples
can be fitted by a negative binomial distribution with meab6¥ and variance
15.623. The sample variogram model consists of a nugget efte686) and a
spherical model with sill @87 and range 120,

By establishing the relationships between the various &snysing the graphical
model as described above, the simulation model could bdaje@ and numerous
realisations of the placer deposit produced. The simulatias both visually
and statistically validated to ensure compatibility to deaditioning data and the
geological model of the deposit. Examples of typical rediens are presented in
Figure 6.

Figure 6:Four conditional simulations of the Cox process. Samplesmnduction blocks
are displayed in black.

An exercise of 100 simulations was carried out, from whiahrtiean and standard
deviation of the all the simulation realisations could blegkted (see Figure 7).

The simulation mean could also be compared the kriged etst#nahich showed

“4Calculated from mixed support kriging
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Figure 7:Mean and standard deviation computed starting from 100itiondl simulations.

a strong correlation (see Figure 8).

15

1.0

Average of simulations

0.0
L

0.0 0.5 1.0 15
Mixed support kriging

Figure 8:Scatter diagram between the mean of simulation and mixegaostikriging
estimates.

Confidence limits for the estimated grade have also beenlesdt (Figure 9) so
that the relative confidence of individual blocks can be ldisthed to guide the
risk profile for mine planning. An analysis of the confidenirils shows both
the contribution of the sampling data and the relative dbuation of the differing

support sizes.

DISCUSSION

In this paper, an algorithm for the conditional simulatidrnttee Cox process has
been developed by transposing the inclusion relationsbgt&een samples and
blocks in terms of a graph. Based on this graph, a consisetrafsconditional
independence assumptions on the potential of samples anHsbis introduced.
Then the multivariate distribution of the potential factes, which leads to a
significant simplification of its simulation algorithm (cditional or not), as well
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.

Figure 9:Quantiles 10% and 90%.

as a much faster running time.

One can question about the validity of the conditional irefefence assumptions
made. Although it is difficult to determine their veracithese assumptions are
reasonably weak, as long as the samples are small w.r.t. Itlsksb Of course,
this is not true for samples that are production blocks, bohsamples are treated
as blocks and thereby are processed differently by the aitoual algorithm. It
should be pointed out that these assumptions are exactbe tbbthe discrete
gaussian model in the case where the potential is an anawsgghgaussian
random function.

Whereas the graphical model approach adopted here has bedrhare for the
conditional simulation of a particular point process, ibsyond doubt that it has
a much wider scope. It can handle many other types of misatadin and can be
applied not only to simulation but also to interpolationwibuld be interesting to
investigate the benefits of such an approach in the muléitedontext.
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