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ABSTRACT 

Fracture density is an important parameter of a fracture network. There are 

several definitions of fracture density and we are concerned here with the 

average fracture surface per unit volume. When fractures are not distributed 

equally among all directions, this parameter can be considered as a function of 

fracture pole. It can be evaluated from areal and/or linear surveys. This 

evaluation must account for the geometric bias due to the fact that fractures 

oblique to the scanline or surface are less easily observed than fractures 

orthogonal to it. A well-known technique to achieve this is the Terzaghi 

correction. We propose here an improved correction when survey outcrops 

and/or boreholes with different orientations are available. 

INTRODUCTION 

Fractures have a large impact on the recovery of oil, the safety of underground 
storage of CO2 or nuclear waste, the assessment of high-enthalpy geothermal 
installations, the safety of mining exploitations, the efficiency of in-situ leaching 
operations or of extraction by block-caving. Fractures is a generic term which 
includes a variety of objects occurring at all scales: faults (with a clear lateral 
displacement of one surface with respect to the other), joints, veins, etc. The 
methodology which follows is not specific to a type of fractures but in 
applications shall be applied separately to the various fracture types considered. 

Usually we study separately the fracture network and the single fracture. In the 
latter case we consider the exact shape of a fracture: topography of its two walls, 
roughness, geometry and continuity of the void space, filling material, traces of 
movement, reaction to mechanical stress or water injection. In the former case a 
fracture is considered as a planar object and stress is laid on the statistical and 
geometric distribution of the objects: fracture density, distribution of fracture 
orientation and fracture size, relationships between the various fracture sets, etc. 
(see, e.g., Chilès, 2005). 
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In practical applications we have to choose a sensible fracture network model 
and fit its parameters. Most models have a large number of parameters, because 
several fracture sets are present, each one with its own characteristics, not to 
speak of their interrelationships. Some of them allow a direct evaluation of their 
parameters, such as the regionalized disc-cluster model designed for granitic 
rocks (Chilès, 1988), and a hierarchical model designed for layered rocks (Chilès 
et al., 2000). Important parameters of nearly all models are fracture density and 
fracture size. The difficulty of their inference is that a fracture network is a 3D 
entity whereas observations are limited to 1D (boreholes) and 2D (outcrops, drift 
walls), and moreover very often to rather short stations, so that the data sets are 
subject to geometric bias, truncation, censoring, etc. 

Many authors have shown how to infer the distribution of fracture traces from 
the sampling of outcrops, bench faces or drift walls, in particular in the 
framework of a maximum likelihood or Bayesian approach; see, among others, 
Baecher (1980), Laslett (1982), and Lantuéjoul et al. (2005). Once the shape of 
the fractures is known, the distribution of fracture size can be deduced from that 
of trace length, for example as shown by Warburton (1980) for disc-shaped 
fractures. We will focus here on the other parameter, fracture density, which is 
also of prime importance. 

There are several definitions of fracture density (see Dershowitz and Herda, 
1992), the main ones being the mean number of fracture centres per unit volume 
(λ) and the mean fractured surface per unit volume (μ). (Since we will not 
consider the fractures as three-dimensional objects – except by introducing 
attributes such as thickness or opening – we will not consider the definition of 
fracture density as the average fractured volume per unit volume.) When 
fractures are considered as finite objects, these parameters are related by 

 μ = λ A (1) 

where A denotes the average fracture surface. If fractures are not distributed 
equally in all orientations, the above parameters shall be considered as functions 
of fracture pole orientation ω (the normal to the fracture plane). 

There are many situations where the direct estimation of fracture density λ and 
fracture size is associated with a large uncertainty, whereas density μ can be 
estimated with more robustness. The problem originates in the stereological 
component of the problem, and also in the difficulty of identifying a fracture, as 
shown in Figure 1: what is observed as a series of three fractures on the outcrop 
can be considered as three distinct fractures, or as a single en-échelon fracture, or 
as a standard fracture whose observation is affected by erosion, vegetation, etc. 
According to the interpretation, we record either a single large fracture, or three 
short fractures. This has a large impact on fracture density λ and fracture size A 
but does not alter fracture density μ. It is thus safe to first estimate μ, which can 
be done in rather good conditions, even if only borehole data are available. The 
fracture size distribution will be inferred – or simply assumed if outcrops are not 
available – and fracture density λ, which is required by most models (e.g., 
Boolean models), will then be deduced from formula (1). 
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Figure 1.  Three possible interpretations of the same outcrop view. 

TERZAGHI CORRECTION 

The main problem when estimating areal fracture density μ is that fractures 
oblique to the survey plane or line are less easily observed than fractures 
orthogonal to it. Figure 2 illustrates the problem in the two-dimensional case, for 
simplicity. This is the situation we have when all fractures are subvertical, which 
is common for joints in subhorizontal sedimentary formations. Let ϕ represent 
the acute angle between the scanline and the fractures of a set of infinite parallel 
fractures. The apparent fracture spacing along the scanline coincides with the 
true spacing if the fractures are orthogonal to the scanline, namely if ϕ = π/2, and 
is larger than the true spacing otherwise. The ratio of the apparent spacing to the 
true spacing is 1 / sin ϕ. This means that fractures at an acute angle ϕ with the 
scanline are underrepresented by a factor sin ϕ. 

In 2D, denoting the scanline direction by α and the fracture direction (azimuth) 
by θ, the factor is | sin(θ – α) | and therefore depends on the fracture set. The 
orientation of the fractures can also be represented by the direction ω = π/2 + θ 
of their normal. The factor | sin(θ – α) | shall then be replaced by | cos(ω – α) |.  
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Figure 2.  Apparent spacing D' associated with true spacing D when the fractures (direction θ) form 
an angle ϕ with the scanline (direction α). 
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In 3D the orientation of a fracture is defined by its pole, usually the unit vector ω 
normal to the fracture and directed towards the lower-hemisphere. The direction 
α of a scanline is also a unit vector. Fractures are perfectly observed when ω and 
α coincide; otherwise they are underrepresented by a factor equal to the cosine 
of the angle formed by the unit vectors ω and α, namely the absolute value of the 
inner product <ω, α>. 

In the sequel we will characterize the fracture orientation by the fracture pole ω, 
which has the advantage of being defined in 2D as well as in 3D. To avoid being 
too formal, we will represent the factor by | cos(ω – α) |, being understood that 
this means |<ω, α>| when ω and α are unit vectors. 

A means to compensate the underrepresentation of oblique fractures in the 
estimation of fracture density is to weight each fracture by 1 / | cos(ω – α) |: 

 
1

1 1ˆ
| cos( ) |

N

i iL =

μ =
ω −α∑  (2) 

where L is the length of the scanline, α its direction, N the number of fractures, 
and ωi the pole of fracture i. This is the Terzaghi correction (1965). The 
assumption of infinite fractures in fact plays no role in that result, nor the 
assumption of parallel fractures. This is why the correction is applied to each 
observed fracture. 

Another way to obtain this result is to consider the scanline as a cylinder with 
length L, direction α, and a very thin circular section with area s, and to measure 
the fracture density μ in that cylinder. The intersection of fracture i with the 
survey cylinder is an ellipse with area si = s / | cos(ωi – α) |. The experimental 
fracture density is thus 
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An immediate generalization, when fractures are sampled along a line with a 
varying orientation or along several lines with total length L is 
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where αi is the local orientation of the scanline at the location of fracture i. 

This estimator can be used with all the fractures (global fracture density), with 
those of a specific fracture set (fracture density of that set), or with the fractures 
of a specific direction ω. In the latter case, by varying ω, we have an estimator of 
the directional fracture density, which can be represented, for example, on a 
Schmidt diagram: 
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In practice, Terzaghi correction gives a large weight to fractures subparallel to 
the scanline, and even an infinite weight to fractures exactly parallel to the 
scanline. Of course, such fractures should not be observed. But fractures are not 
perfect planes, the scanline is not perfectly linear, even locally, directional 
measurements are affected by some uncertainty, so that very large weights are 
often observed. The estimators (2) and (3) are thus not robust. 

Mauldon and Mauldon (1997) generalize Terzaghi correction to the sampling by 
a borehole with nonzero diameter. In that case the correction always remains 
finite. Their result is very useful when we are interested in fractures with a size 
comparable with the diameter of the borehole. However, in the situation we 
envisage (fractures much larger than the borehole diameter) the correction can be 
very large. 

Yow (1987) thus recommends not to take account of fractures that are too 
oblique to the scanline direction. The limit depends on the roughness of the 
outcrop, the shape of the fractures, the measurement accuracy. A limit of 15° is 
often used. This improves the robustness of the estimator but has the 
inconvenience of introducing some bias by discarding valid data. We therefore 
propose a variant of Terzaghi correction which represents a valuable 
improvement when outcrops or boreholes with different directions are available. 

IMPROVED TERZAGHI CORRECTION 

The principle of the method is to consider that, for the study of fractures with 
pole ω, a station with length Lsta and direction α provides neither more nor less 
information than a station orthogonal to the fractures and with length 
Lsta | cos(ω – α) |. This leads to define an equivalent length, function of ω, as 

L(ω) = Lsta | cos(ω – α) | 

When several stations are available with lengths L1, …, Ln, and directions α1, …, 
αn, respectively, the total equivalent length for fractures with direction ω is 

L(ω) = L1 | cos(ω – α1) | + … + Ln | cos(ω – αn) | 

If N(dω) fractures with pole in the solid angle dω around ω have been observed 
in these n stations, the fracture density for polar direction ω is 

 1
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In practice, taking into consideration that the model (planar fractures, rectilinear 
stations) is an approximation to the reality and that the measurements are 
affected by measurement errors, in that definition N(dω) and L(ω) are replaced 
by weighted averages (for example the average in a window of 15° centred on 
ω). 
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This approach allows a robust and unbiased estimation of directional fracture 
density while discarding no data, provided that the survey stations do not all 
have the same orientation. Otherwise, it amounts to Terzaghi correction (4). 

Most importantly, the function L(ω) quantifies the degree of isotropy of the 
sampling scheme and thus provides some information on the quality of the 
directional rosette or Schmidt diagram synthesizing the results. If L(ω) remains 
approximately constant, the variations in directional density can be more safely 
analyzed than in the reverse situation. 

This approach does not claim for originality: While reviewing the literature for 
the present paper, the authors found a very similar approach in Kiraly (1969), 
who himself referred to Muller (1963). The approach of Zhang and Einstein 
(2000), thought different, is also of the same vein. But many practical studies do 
not account correctly for the geometrical bias inherent to scanline surveys, or 
even ignore it. 

EXTENSION TO AREAL SURVEYS 

The above approach can be easily extended to an areal survey, where fracture 
traces are sampled on a planar outcrop. Let β denote the unit vector normal to 
the outcrop, S the outcrop surface, ℓi the length of that part of fracture trace i in 
the outcrop. By considering the outcrop as a volume with a very thin thickness e, 
the surface of fracture i within this volume is ℓi e / | sin(ωi – β ) |, so that the 
equivalent to Terzaghi correction (4) in the case of several outcrops with 
surfaces summing to S would be 
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where βi is the normal to the outcrop where fracture i has been measured. In the 
approach we propose, a station with surface Ssta orthogonal to the unit vector β 
provides neither more nor less information on fractures with pole ω than a 
station orthogonal to the fractures and with surface Ssta | sin(ω – β) |. This leads 
to define an equivalent surface, function of ω, as 

S(ω) = Ssta | sin(ω – β) | 

When several stations are available with surfaces S1, …, Sn, and normals β1, …, 
βn, respectively, the total equivalent surface for fractures with direction ω is 

S(ω) = S1 | sin(ω – β1) | + … + Sn | sin(ω – βn) | 

so that the equivalent to formula (5) is 
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APPLICATION 

The French National Agency for Radioactive Waste Management (or Andra) set 
up an underground research laboratory in the east part of France to study the 
feasibility of a deep geological waste repository in clay for high-level and long-
lived intermediate-level radioactive waste. This laboratory is located in the 
eastern rim of the Paris Basin. In the studied zone, the Paris Basin consists of 
(from bottom to top): the Dogger limestone formation, with two units, the 
Bajocian and Bathonian units; the Callovo-Oxfordian argillite (selected host 
layer); and the Middle to Upper-Oxfordian limestone formation. 

A statistical analysis of fracturing in Dogger and Oxfordian limestones has been 
carried out in order to make up the starting point for hydrological modelling. At 
the location of the laboratory the argillite layer is located from 422 up to 552 m in 
depth; the study was therefore done with data sampled at outcrops distant of 
several ten kilometres from the laboratory. 

In the field, 23 sites displaying exposures of good quality were selected for 
scanline surveys along 20 to 80 m. A systematic scanline record of 1378 fractures 
of all types has been realised. Sub-vertical joints are by far the most abundant 
structures (87% of the measures).  

Directional density has been analyzed by geological unit (Bajocian, Bathonian, 
Oxfordian), fracture type (fault, joint, vein, stylolitic joint), and importance class 
(major joints intersecting the whole height of the outcrop; joints crossing several 
layers; joints confined to a single layer). We focus on joints confined to a single 
layer, which is the most frequent class (864 fractures). 

Since the joints are subvertical, the analysis of their orientation was carried out 
in terms of azimuth. The graphs of L(θ) and μ(θ) show the following (Fig. 3): 

− In the Oxfordian formation, even if the sampling scheme is very 
anisotropic and with a rather short equivalent length (L(θ) varies between 
40 and 140 m), fracturation density brings out two major sets, centred on 
N45 and N135. 

− The situation is similar in the Bathonian unit (L(θ) varies between 50 and 
150 m), but the N135 set broadens with the emergence of a secondary set 
N0. 

− In the Bajocian unit on the contrary, the graph of μ(θ) as a function of 
fracture direction is rather chaotic and brings out no dominant set. 

We could suspect this last observation to be due to a poor quality of the sampling 
in that geological unit. In fact this is not the case: the Bajocian unit has the largest 
number of stations (11). The good quality of the sampling in this unit is 
confirmed by the graph of L(θ) which is the richest and the most regular (L(θ) 
varies from 150 up to 210 m). These facts validate the above conclusions. 

This was a surprise, because one expected a difference between the limestones 
below and above the argillite. In fact the Upper-Dogger and Oxfordian units 
encompassing the argillite layer behave similarly, whereas the main difference 
occurs between the Lower and Upper-Dogger units. 
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Figure 3.  Graphs of equivalent length L (left) and fracture density μ (right) as functions of fracture 
direction θ, in the three geological units. Azimuth θ in degrees from North, L in metres, μ in m2 per 
m3 and per degree. 

Table 1. Fracturation density of joints for each geological unit and each directional set. 

Unit D1 
(N20-N60) 

D2 
(N110-N160)

D3 
(N160-N20) 

D4 
(N60-N110) 

Total 

Bajocian 0.63 0.81 0.87 0.65 2.96 

Bathonian 1.84 1.38 0.84 0.30 4.36 

Oxfordian 1.50 0.87 0.21 0.14 2.72 
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These results as well as the examination of directional rosettes of the individual 
stations led to the definition of four directional joint sets, which correspond to 
the two major sets (D1 and D2) and two intermediate sets (D3 and D4). Table 1 
gives their definition and their fracture density in each unit, obtained by 
integration of formula (5). We notice that the total fracture density has nearly the 
same magnitude in the three units, since it varies between 3 and 4 m2/m3, with 
the highest value in the Bathonian unit. 

DISCUSSION AND CONCLUSION 

The estimation of fracture density is a mere part of the study of a fractured 
medium but it may have a major role. For example, when the other parameters 
are fixed, the value of fracture density will decide whether the medium is below 
or above the percolation threshold, which has a major impact on the fluid flow 
regime. 

The estimator of (directional) fracture density we propose improves Terzaghi 
correction. However, it does not exempt us from looking at the usual questions 
on the representativity of the data. Fracture density often varies spatially, so that 
the graph obtained from all the data is an average. As there is usually not much 
choice in the location of the stations, this average does not necessarily correctly 
represent the average in the study area. It is also necessary to model these spatial 
variations, if data permit. This is particularly important in layered formations, 
where the spacing of vertical joints confined to a single bed is often correlated 
with bed height. Lastly, extrapolating fracture parameters from outcrops to the 
underground remains an open question, because the decompression of rocks in 
the vicinity of the surface tends to develop new fractures. 
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