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THE GENERALIZED VARIOGRAM 

Jean-Paul CHILÈS 

Bureau de Recherches Géologiques et Minières, Orléans, France 
MINES ParisTech, Fontainebleau, France1 

Abstract. Although stationary phenomena are characterized by their covariance, the structural tool is 
the variogram. In the case of nonstationary phenomena, the variogram is not experimentally 
accessible, so that blind methods are often used for the identification of the ordinary or generalized 
covariance. However, if regularly spaced data are available (at grid nodes or along profiles), the 
generalized variogram can be computed. It filters any polynomial trend up to a given degree. Its 
relation with the covariance is nearly as simple as for the ordinary variogram. The theory of the 
generalized variogram is presented: definition, relation with the ordinary or generalized covariance, 
estimation and fluctuations in the Gaussian and non-Gaussian cases. 

Key words: Covariance, generalized covariance, variogram, variogram of residuals, generalized 
variogram, intrinsic random function, drift, trend. 

INTRODUCTION 

Although stationary phenomena are charaterized by their covariance function, the advantage 
of the variogram as a structural tool is well known (Jowett, 1955; Matheron, 1965). But when 
dealing with strongly nonstationary phenomena, we must resort to inference methods that give 
rise to bias problems (e.g., variogram of residuals; cf. Matheron, 1970; Sabourin, 1976) or to 
more-or-less blind methods (automatic fitting of the coefficients of a polynomial generalized 
covariance; cf. Delfiner, 1976). If regularly spaced data are available (e.g., at grid nodes, or 
along profiles, which is more and more common in surveys with continuous measurements), 
the generalized variogram, which has been presented and applied to actual data by Chilès 
(1979) and Chilès and Gable (1984), can be used profitably. Published papers show a constant 
interest in nonstationary models and their inference: Starks and Fang (1982), Kitanidis (1983, 
1985), Marshall and Mardia (1985), Stein (1986), Campbell (1988), Zimmerman (1989), 
Dimitrakopoulos (1990), Pardo Igúzquiza and Dowd (2003), Bosch et al. (2009), etc. In the 
case of regularly spaced data, Cressie (1987) has proposed a tool which is similar to the 
generalized variogram, but more difficult to interpret. Chauvet (1987) has investigated the use 
of the covariance of generalized increments, a tool which is very powerful, but requires more 
care in its interpretation. This paper presents the generalized variogram theory in a 
comprehensive manner: definition, relation with the ordinary or generalized covariance, 
estimation and modeling in Gaussian and non-Gaussian cases. 

                                                 

1 This technical note, written in 2012, is based on a previous note in French (Chilès, 1979), 
supplemented in 1989 by numerical calculations of estimation and fluctuation variances of the 
generalized variogram. An expanded summary is included in Chapter 4 of Chilès and Delfiner (1999). 
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RECALL ON RANDOM FUNCTION MODELS 

Only a brief recall will be presented. Comprehensive presentations can be found in Matheron 
(1970, 1973), Cressie (1987), and Chilès and Delfiner (1999). 

Regionalized Variable—Random Function 

Let z(x) be a regionalized variable, that is, a function of point x ∈ D, where D is a subset of 
the Euclidean space Rn (usually n ≤ 3). Because of its double—simultaneously random and 

structured—character, this regionalized variable is considered as a realization of a random 
function (RF) Z(x). It is also assumed that z(x) is the unique known realization of Z(x), which 
is usually the case in earth science applications. No inference of the random function is then 
possible, unless complementary assumptions of ergodicity and stationarity are introduced that 
allow the replacement of averages on all possible realizations by spatial averages on a single 
realization. As a single realization is considered, the choice of a model which would not 
satisfy the ergodicity hypothesis would have no objective meaning (Matheron, 1978, 
pp. 103-106). So, without loss of generality, ergodic models will be considered. Concerning 
stationarity, a too strict assumption can be inconsistent with the data. Several models have 
been developed, with the aim of weakening the necessary stationarity assumptions. Because 
only the first two moments of the random function—and not its whole spatial distribution—
will be used, some kind of second-order stationarity will be assumed. 

Stationary Random Function (SRF) 

The simplest model is that of (second-order) stationary random functions (SRF). The 
mathematical expectation of Z(x) is equal to a constant m that we assume known and that we 
take equal to zero—without loss of generality—and the covariance between Z(x) and Z(x + h) 
is a function of the separation vector h only: 

E[Z(x)] = 0 

E[Z(x) Z(x + h)] = C(h) 

The covariance C(h) is a positive definite function, which warrants that the variance 
( ) ( ) ( )dx C x x dx′ ′λ − λ∫ ∫  of any linear combination ( ) ( )dx Z xλ∫  is positive or null. Here the 

measure λ is a combination of Dirac measures, so that the integral ( ) ( )dx Z xλ∫  is a finite 

sum, assigning weights λi to points xi. This property applies also to linear functionals but 
these will not be considered here. 

Universal Kriging Model (UK) 

In many applications, the stationary character fails because of the presence of a trend. This led 
Matheron (1969) to define a less restrictive model, the universal kriging (UK) model, where 
Z(x) is the sum of two terms: 

Z(x) = m(x) + Y(x) 
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where: 

− The drift m(x) = E[Z(x)] is a function that varies slowly and that locally admits a 
representation of the form 

0
( ) ( )

L
m x a f x

=
=∑ , 

where the f ℓ functions are all the monomials of degree ≤ k (degree of the drift) and the 
aℓ's are unknown coefficients. The total number of monomials, denoted L + 1, is equal 

to k + 1 in R1, (k + 1) (k + 2) / 2 in R2, (k + 1) (k + 2) (k + 3) / 6 in R3, and k n
k
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 in Rn. 

− The random component Y(x) is a zero-mean SRF with covariance C(h). 

If k = 0, the drift m(x) is reduced to the constant term a0 and the model locally corresponds to 
an SRF with an unknown mean. It is also possible to define a UK model with f ℓ functions 
other than monomials, but such a model will not be considered. 

Admissible Linear Combinations (ALC–k)—Generalized Increments (GI–k) 

Within the framework of the UK model, the shape of the drift—that is, its degree k—is 
assumed to be known, but the aℓ coefficients are unknown. For the computation of second-
order moments of Z(x), it is therefore necessary to only use linear combinations (or more 
generally linear functionals) that are independent of the aℓ's—that is, that filter the drift 
whatever the aℓ's. More explicitly, this means that we will only consider the variance of linear 

combinations ( ) ( ) ( )Z dx Z xλ = λ∫  that satisfy 

 ( ) ( ) 0 0,1,...,dx f x Lλ = =∫  (1) 

(i.e., for any monomial of degree ≤ k). We recall that λ is a combination of Dirac measures, so 
that these integrals are finite sums. 

A linear combination satisfying (1) is called an allowable linear combination of order k 
(ALC–k); it is also called authorized linear combination of order k, or generalized increment 
of order k (GI–k). 

Note that conditions (1) are a generalization of the universality conditions of UK: Indeed, 

when Z(x0) is estimated at an unsampled point x0 by some linear combination 
1

( )
N

i i
i

Z x
=

λ∑  of 

the N data values, the universality conditions 

0
1

( ) ( ), 0,1,...,
N

i i
i

f x f x L
=

λ = =∑  
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are imposed to ensure an unbiased estimation whatever the aℓ's. The estimation error is 

0
1

( ) ( )
N

i i
i

Z x Z x
=

λ −∑ . It is of the form ( ) ( )dx Z xλ∫ , where λ is the linear combination with 

weight λi at point xi and λ0 = –1 at point x0 and satisfies (1). 

Intrinsic Random Functions (IRF–k) 

Instead of focusing the attention on the function Z(x) itself, the theory of intrinsic random 
functions (Matheron, 1971, 1973) lays stress on generalized increments: 

By definition, Z(x) is an intrinsic random function of order k (IRF–k) if and only if for any 
ALC–k λ the random function ( ) ( ) ( )Z x du Z x uλ = λ +∫ is a zero-mean SRF. 

Generalized Covariance (GC) 

The covariance function of an SRF is a positive definite function, because this is the condition 
for the variance of any linear combination to be non-negative. If only ALC–k are taken, there 
is no need to be so exacting, and one can consider as a generalized covariance any function 
K(h) such that ( ) ( ) ( )dx K x x dx′ ′λ − λ∫ ∫  is non-negative for any ALC–k Z(λ). From this point 
of view, the main property of an IRF–k is as follows (Matheron, 1973, p. 450, as a 
consequence of Gel'fand–Vilenkin theory): 

i) If Z(x) is an IRF–k, there exists a generalized covariance K(h) such that the covariance 
of any pair of ALC–k Z(λ) and Z(µ) is of the form 

( )Cov ( ), ( ) ( ) ( ) ( )Z Z dx K x x dx′ ′λ μ = λ − μ∫ ∫ . 

ii) This generalized covariance is unique up to an even polynomial of degree 2k (if an even 
polynomial of degree ≤ 2k is added, then ( ) ( ) ( )dx K x x dx′ ′λ − μ∫ ∫  remains unchanged 

when Z(λ), Z(µ) are ALC–k). 

A welll-known particular case is k = 0, which corresponds to the ordinary intrinsic random 
functions: Only linear combinations satisfying ( ) 0dxλ =∫  are used for variance and 
covariance computations. The GC is defined up to a constant; the GC K(h) such that K(0) = 0 
is equal to –γ(h), where γ(h) is the variogram ½Var[Z(x + h) – Z(x)]. 

Generalized Covariance Models 

Except in the stationary case (which can be seen as the case where k = –1), the GC K(h) is not 
the covariance of Z(x) and Z(x + h), which may not be defined. The GC can be used only for 
calculating variances and covariances of ALC–k. When the value of the order k increases, the 
class of the ALC–k shrinks, and conversely the class of the GC functions expands (hence the 
class of phenomena that can be modeled by such random functions expands). 

In practice, the basic generalized covariance models used at order k are: 
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− the ordinary covariance functions of SRFs. 

− the power law model 

(–1)1 + ⎣α/2⎦ |h| α, 0 < α < 2k + 2, α not even 

where ⎣·⎦ is the floor function—that is, ⎣u⎦ is the largest integer not greater than u. 
(–1)1 + ⎣α/2⎦ thus gives the sign of the covariance. This sign alternates with the value of α: 
It is negative for 0 < α < 2, positive for 2 < α < 4, negative for 4 < α < 6, and so on 
(Matheron, 1973, p. 452). Note that we do not take even values of α, as a GC is defined 
up to an even polynomial of degree 2k. 

− the generalized covariance 

(–1)m+1 |h| 2m log |h|, 1 ≤ m ≤ k 

which is obtained as the limit of (–1)m+1 [|h| 2m +ε – |h| 2m] / ε when ε > 0 tends to 0 
(Chauvet 1987, pp. 53–54; Chilès and Delfiner, 1999, p. 264, or 2012, p. 266). In R2 the 

covariance |h| 2 log |h| with k = 1 is of particular interest, because in this case kriging 
coincides with spline interpolation (Matheron, 1980, 1981; Dubrule, 1983). 

− the polynomial generalized covariance 

2 11
2 1

0
( 1)

k
mm

m
m

b h ++
+

=
−∑  

where the b2m+1 coefficients satisfy some suitable restrictions (Matheron, 1973, p. 452; a 
sufficient condition is b2m+1 ≥ 0 for every m). If we add a nugget effect component 
C0 δ(h), where δ is the Dirac delta function, and logarithmic terms, we get the more 
general polynomial/logarithmic model 

 2 1 21 1
0 2 1 2

0 1
( ) ( ) ( 1) ( 1) log

k k
m mm m

m m
m m

K h C h b h b h h++ +
+

= =
= δ + − + −∑ ∑  (2) 

with C0 ≥ 0, b2m+1 ≥ 0, b2m ≥ 0 for every m (as previously stated this is a sufficient 
condition). Note that these models do not include even monomials, because K(h) is 
defined up to an even polynomial of degree ≤ 2k, which would contribute for 0 in the 
variance of an ALC–k. 

IDENTIFICATION OF THE GENERALIZED COVARIANCE: THE GENERALIZED 
VARIOGRAM 

The Problem 

Once the degree k and the GC K(h) are known, estimation by kriging can be easily performed 
(Matheron, 1973, pp. 457–460). The key problem is in fact the determination of the GC. 
Because K(h) is not the covariance of Z(x) and Z(x + h), it cannot be determined for a given h 
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by taking pairs of points a distance h apart, as is done for the ordinary covariance of a zero 
mean SRF. In the general case of scattered data, an automatic fitting to a model of the type 

( ) ( )m m
m

K h b K h=∑  

is usually performed, where the Km's are a priori given elementary GC models and the bm's are 
the coefficients to be fitted (see Delfiner, 1976; Chilès, 1978; Kitanidis, 1985; Marshall and 
Mardia, 1985; Stein, 1986; Chilès and Delfiner, 1999). The a priori model, usually a 
polynomial GC with a nugget effect, can be ill-adapted. Therefore a non-parametric 
evaluation of the GC would be useful. 

Apart from the stationary case with zero mean, which is practically never encountered and for 
which the GC K(h) coincides with the ordinary covariance C(h), there exists an important case 
where K(h) can be inferred by means of a non-parametric method. This is the case of the 
ordinary IRF, or IRF–0. The usual structural tool is the variogram 

[ ]1
2( ) Var ( ) ( )h Z x h Z xγ = + −  

which is linked with the GC by the relation 

( ) (0) ( )h K K hγ = −  

As the GC is defined up to a constant, it can be taken as –γ(h). 

The variogram is based on the variance of the increment Z(x+h) – Z(x), which is the simplest 
ALC–0. The obvious generalization when k > 0 is to use the variance of the finite difference 
of order k + 1. 

Finite Differences of Order k + 1 

The generalization of the simple increment or finite forward difference  

( ) ( ) ( )hZ x Z x h Z xΔ = + −  

is the increment or finite forward difference of order k + 1, which is the simplest ALC–k in 
1D: 

 

1
11

0

1
11

0

( ) ( 1) ( ( 1 ) )

( 1) ( 1) ( )

k
kk q

h q
q

k
kk p

p
p

Z x Z x k q h

Z x ph

+
⎛ ⎞++
⎜ ⎟⎜ ⎟
⎝ ⎠=

+
⎛ ⎞++
⎜ ⎟⎜ ⎟
⎝ ⎠=

Δ = − + + −

= − − +

∑

∑
 (3) 

The increments of successive orders are linked by the recurrence relationship 

1 ( ) ( ( ))k k
hh hZ x Z x+Δ = Δ Δ  
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The computation of finite differences of successive orders is commonly used in the study of 
nonstationary time series, in order to get roughly stationary variables (ARIMA models; see 
Box and Jenkins, 1970). Indeed, just as the simple increment filters any constant term, the 
increment of order k + 1 filters any polynomial component of degree ≤ k. Other 1D ALC–k 
could be considered (e.g., the one used by Cressie, 1987). 

An interesting property has been demonstrated by Chauvet (1987, pp. 29–31): Any 1D ALC–
k built on regularly spaced points can be decomposed into a sum of increments of order k + 1 
with h equal to the spacing, and the decomposition is unique. 

Generalized Variogram of Order k (GV) 

By definition, the generalized variogram of order k, denoted by Γ(h) and abbreviated as GV, 
is the appropriately scaled variance of the increment of order k + 1: 

 11( ) Var ( )k
h

k
h Z x

M
+⎡ ⎤Γ = Δ⎣ ⎦  (4) 

The scaling factor 2 2
1

k
k k

M ⎛ ⎞+
⎜ ⎟⎜ ⎟+⎝ ⎠

=  is introduced to ensure that, in case of a pure nugget effect C0, 

we have 

0

0 if 0
( )

if 0
h

h
C h

=⎧
Γ = ⎨ ≠⎩

 

as for an ordinary variogram. 

Here we find a justification for naming γ(h) a variogram rather than a semi-variogram; 
otherwise Γ(h) would not be the generalized variogram, even less the generalized semi-
variogram, but the Mkth of a generalized variogram! Actually, if the term semi-variogram has 

been used in the first geostatistical publications (Matheron, 1965), the term variogram has 
been previously defined by Jowett (1955) as the experimental graph of γ(h). 

Explicitly we have: 

k h Z x h Z x h Z x

k h Z x h Z x h Z x h Z x

k h Z x h Z x h Z x h Z x h Z x

= − +

= − −

= − + − +

⎧

⎨
⎪⎪

⎩
⎪
⎪

1 2 2

2 3 3 2 3

3 4 4 3 6 2 4

:

:

:

Γ

Γ

Γ

( ) =  Var [ ( + ) ( + ) ( )]

( ) =  Var [ ( + ) ( + ) + ( + ) ( )]

( ) =  Var [ ( + ) ( + ) ( + ) ( + ) ( )]

1
6
1

20
1

70

 

The first definition of the generalized variogram can be found in Matheron (1972, p. 3). It was 
first used by Orfeuil (1972), who computed the sample GVs of simulations of IRF–k with 
given GC K(h) in order to compare them with their theoretical value. This is a function of the 
GC, as it will be seen now. 
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Relationship Between Generalized Variogram and Generalized Covariance 

Because the increment of order k + 1 is an ALC–k, its variance can be expressed in terms of 
the generalized covariance. Applying the definition of a generalized covariance to (4) gives 

 
1

2 2
1

1

1( ) ( 1) ( )
k

kp
k p

p kk
h K ph

M

+
⎛ ⎞+
⎜ ⎟⎜ ⎟+ +⎝ ⎠=− −

Γ = −∑  (5) 

Explicitly 

k h K K h K h

k h K K h K h K h

k h K K h K h K h K h

 = 1: ( ) =  ( ) ( ) ( )

= 2: ( ) =  ( ) ( )  ( )

= 3: ( ) =  ( ) ( ) ( ) ( ) + ( )

Γ

Γ

Γ

0 2

0 2 3

0 2 3 4

4
3

1
3

3
2

3
5

1
10

8
5

4
5

8
35

1
35

− +

− + −

− + −

⎧

⎨
⎪⎪

⎩
⎪
⎪

( )  

While being simple, the relationship between Γ and K is more complex than in the case of an 
ordinary variogram. In particular, whether the GV determines the GC (up to the even 
polynomial) is still an unsolved problem. Chauvet (1987) has studied this problem in the 1D 
case in a more general framework: Since 1 ( )k

h Z x+Δ  is an SRF, its covariance can be defined 
as 

 1 1( ) E ( ) ( )k k
h h hC l Z x Z x l+ +⎡ ⎤= Δ Δ +⎣ ⎦  (6) 

The generalized variogram Γ(h) is equal to 1 (0)hMk
C . The covariance Ch(l) is obviously a 

more powerful tool than the generalized variogram, but its interpretation is also more 
complex. From definitions (3) and (6), it is linked with the GC through the relation (e.g., 
Chauvet, 1987, p. 41): 

 
1

2 2
1

1
( ) ( 1) ( )

k
kp

h k p
p k

C l K l ph
+

⎛ ⎞+
⎜ ⎟⎜ ⎟+ +⎝ ⎠=− −

= − +∑  (7) 

Chauvet (1987, pp. 108–111) has proven that the knowledge of Ch(l) for any h and l 
determines the GC K(h) (up to the minimum indetermination). But it is not so obvious 
whether the knowledge of the sole GV Γ(h) (i.e., of Ch(l) for any h, but only for l = 0) 
characterizes the GC. Expressed in its generality, the problem has not been solved up to now 
(Chauvet, 1987, pp. 215–231). 

However, there are two important cases where the GV does determine the GC (up to the even 
polynomial): (i) when the GC is bounded (the GC amounts to an ordinary covariance), and 
(ii) when the GC is a sum of power law models, and in particular when it is a 
polynomial/logarithmic generalized covariance. 
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Case of the power law model 

If K(h) behaves like |h|α, or more generally if it is a sum of power-law models of the form 

1( ) ( 1)K h b h α+ ⎣α/2⎦
α

α
= −∑  

with non-even powers α comprised between 0 and 2k + 2 and positive coefficients bα, then 
Γ(h) has the same form: According to (5), only the coefficients change: 

1( ) ( 1)h b B h α+ ⎣α/2⎦
α α

α
Γ = −∑  

with 

 
1

2 2
1

1

1 ( 1)
k

kp
k p

p kk
B p

M

+
⎛ ⎞ α+
⎜ ⎟⎜ ⎟α + +⎝ ⎠=− −

= −∑  (8) 

In particular, a polynomial GC leads to a polynomial GV. 

Even values for α are excluded from the power law model—they would give a zero 
contribution to the GV. Conversely, a GC of the form K(h) = (–1)m+1 b2m |h|2m log |h|, with 
1 ≤ m ≤ k, leads to the even GV Γ(h) = (–1)m+1 b2m B2m |h|2m with 

1
2 2 2

2 1
1

1 ( 1) | | log(| |)
k

kp m
m k p

p kk
B p p

M

+
⎛ ⎞+
⎜ ⎟⎜ ⎟+ +⎝ ⎠=− −

= −∑  

(with the convention that the term corresponding to p = 0 in this sum is zero). Consequently, 
if the GC K(h) follows a polynomial/logarithmic model (2), the GV Γ(h) is a polynomial of 
degree 2k + 1 in |h|, where all the logarithmic terms of K(h) have turned into even degree 
terms. Explicit results are given below (where h stands for |h|): 

2 3
0 1 2 3

2 4 42 3
0 1 2 33 3 3

( ) = ( )  + log  +
1

( ) =  [1 ( )] +  + log 2 +

K h C h b h b h h b h
k

h C h b h b h b h

⎧ δ −⎪= ⎨
Γ − δ⎪⎩

 

2 3 4 5
0 1 2 3 4 5

3 3 32 3
0 1 2 35 10 5

3 334 5
4 510 5

( ) = ( ) + log + log

( ) =  [1 ( )] + + (8log 2 3log 3)2

+ (27 log 3 32 log 2) +

K h C h b h b h h b h b h h b h

h C h b h b h b hk

b h b h

⎧ δ − − −
⎪⎪ Γ − δ − += ⎨
⎪

−⎪⎩

 

2 3 4 5 6 7
0 1 2 3 4 5 6 7

4 72 162 3
0 1 2 37 35 35

24 164 5
4 535 7

8 24166 7
6 735 35

( ) = ( ) + log + log + log +

( ) =  [1 ( )] + + (2 log 2 log 3) +
3

+ (27 log 3 40 log 2) +

+ (1248 log 2 729 log 3) +

K h C h b h b h h b h b h h b h b h h b h

h C h b h b h b h
k

b h b h

b h b h

⎧ δ − − −
⎪

Γ − δ −⎪⎪= ⎨
−⎪

⎪
−⎪⎩
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Case of an ordinary covariance 

If K(h) is an ordinary covariance with range a and value C at h = 0, then Γ(h) = C for |h| ≥ a. 
In other words, Γ(h) has the same range and sill as the ordinary variogram K(0) – K(h). 
Consequently, the nugget effect, if any, remains the same. The behavior near the origin is 
polynomial in all common covariance models, and hence remains polynomial, but with 
changes in the coefficients; in particular, the even terms of degree ≤ 2k disappear. Figure 1 
displays the GVs associated with the spherical, cubic, exponential, and Gaussian covariances, 
where these models are defined as: 

− Spherical model: 

( )3 1 3
2 21 if 1

( ) with | | /
0 if 1

C r r r
K h r h a

r

⎧ − + ≤⎪= =⎨
≥⎪⎩

 

− Cubic model: 

( )35 7 32 3 5 7
4 2 41 7 if 1

( ) with | | /
0 if 1

C r r r r r
K h r h a

r

⎧ − + − + ≤⎪= =⎨
≥⎪⎩

 

− Exponential model: 

( ) exp( | | / )K h C h a= −  

− Gaussian model: 

2 2( ) exp( | | / )K h C h a= −  

Variogram Fitting 

From a practical viewpoint, it should be kept in mind that the objective is to identify the GC 
function K(h), since it is the one involved in estimation problems. So, after computing a 
sample GV, one will try to fit a linear combination of GV models associated with given GC 
models. As the GV models remain close to the GC models, fitting a sample GV is not more 
difficult than fitting an ordinary sample variogram. In particular, automatic fitting procedures 
of sample variograms like that proposed by Desassis and Renard (2012) can be easily adapted 
to fit sample GVs. (The procedure of these authors is iterative and fits the ranges and sills of 
the various components.) In the special case of a polynomial/logarithmic GC, the situation is 
very simple: The coefficients of the GC model derive directly from the fitting of a polynomial 
with positive coefficients to the sample GV. 

The validity of the method can be examined from the point of view of sampling theory. But 
let us first present a case study. 
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FIGURE 1.  Generalized variograms Γk associated with four classical covariance models (spherical, 
cubic, exponential, and Gaussian covariances) for k = 0, 1, 2, 3. 

A CASE STUDY 

We consider civil-engineering microgravimetric data (Bouguer anomaly, quarry of Ariana, 
Tunisia). These data comprise 502 points on a 15-m grid, supplemented by 250 points where 
anomalies are suspected. The measurements were done with an accurracy of ±4 μgal. 
Assuming that this accuracy corresponds to twice the standard deviation of a Gaussian error, 
the measurement error variance is C0 = 4 μgal2. This is the value we will use, because the 
variograms will show a very small nugget effect, without the possibility to precise its value. 

A display of the data shows an essentially linear NW–SE global trend (Figure 2). Not 
surprisingly, the raw variogram is clearly parabolic (Figure 3a). The directional variograms 
(not reproduced here) show, however, that no direction is entirely free of drift. 
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FIGURE 2.  Display of microgravimetry data. The domain is a square of 384m × 384m. The Bouguer 
anomaly varies between –50 and 2450 μgal; "C" represents the lowest values, and "3" represents the 
largest values. 

Because the drift has a simple overall shape, a sensible approach is to work with the 
variogram of the residuals obtained after subtraction of a polynomial least-squares trend. This 
variogram is only slightly biased at small distances, and knowledge of the variogram at small 
distances is enough for a subsequent kriging in moving neighborhood. Local variograms of 
the residuals were computed in subdomains. They are quite isotropic and present no 
significant variations through the study domain. Therefore, we worked with global 
omnidirectional variograms. The least-squares trend and the variogram of the residuals have 
been computed with the data of the regular grid, to avoid giving more weight to specific areas. 
Figures 3b–d show the variograms of residuals γ1, γ2, and γ3 associated with trends of degree 
1, 2, and 3, respectively. 
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FIGURE 3.  Microgravimetry in a quarry: (a) raw variogram; and variogram of residuals obtained 
after subtracting a global drift of degree k estimated by least squares: (b) k = 1; (c) k = 2; (d) k = 3. 
Notice the change in vertical scale between the raw variogram and the variograms of residuals. 
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They show that in order to eliminate the effect of the drift, we must consider a global drift of 
degree 2, if not 3. The variogram of residuals then has a range of 60 m, or about one-sixth of 
the length of the domain. In this case the variogram of residuals is practically unbiased up to 
half the length of the domain (this is apparent when constructing simulations without drift, 
subtracting a least-squares trend, and comparing the raw variogram with the variogram of 
residuals). We obtain a good fit of γ3 by a spherical model with range a = 60 m and sill 
C = 430 μgal2, plus a measurement error nugget effect C0 = 4 μgal2. To cross-validate the fit, 
146 sample points were estimated from their neighbors and gave a mean square standardized 
error (ratio of sample variance by theoretical estimation variance) of 1.06, which is excellent. 

As the sampling is regular, the generalized variogram approach can also be applied. Figure 4a 
again displays the raw variogram (i.e., the sample GV of order 0) whereas Figures 4b–d 
display the sample generalized variograms Γ1, Γ2, and Γ3 computed for k = 1, 2, and 3, 
respectively, and averaged over the two main directions of the grid. Naturally, these 
variograms are computed up to the distance L / (k + 1), where L is the length of the study 
domain. 

They show quite clearly that the drift is still present in Γ1, but filtered by Γ2 and Γ3. One 
notices a range of about 50 meters. Using the curves of Figure 1, Γ2 can be fitted very well by 
the GV associated with the spherical model of range a = 55 m and sill C = 400 μgal2, plus the 
nugget effect C0 = 4 μgal2. This fit is also fine for Γ3. The same cross-validation exercise as 
above gives a mean square standardized error of 1.04. 

In this example, the generalized variogram gives practically the same results as the variogram 
of residuals (the slope at the origin changes by less than 1%). Note nevertheless that the GV 
fit was achieved with k = 2 because generalized increments filter the drift locally, whereas 
k = 3 was required with the variogram of residuals based on a global fit. An application to the 
topography of a fracture is provided by Chilès and Gentier (1993) and reproduced in Chilès 
and Delfiner (1999, pp. 279–280, or 2012, pp. 284–286). The drift has also a simple form, 
which allows a global fit, and the two approaches also lead to similar results. In more 
complex cases a simple global fit of the drift is not satisfactory. If the data are sampled along 
lines, then the generalized variogram has a role to play. At short distances it only involves 
close points and filters the local drift. In addition, Γ(h) can reflect the unbounded behavior of 
the underlying generalized covariance, while by construction the variogram of residuals is 
always bounded. 
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FIGURE 4.  Microgravimetry in a quarry: generalized variogram of order k: (a) k = 0 (i.e., variogram 
γ(h) identical to that of Figure 3a); (b) k = 1; (c) k = 2; (d) k = 3. Notice the change in vertical scale 
between the raw variogram and the generalized variograms. 
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THEORY OF THE ESTIMATION OF THE GENERALIZED VARIOGRAM 

We have defined a way for inferring the generalized covariance when regularly spaced data 
are available. This approach is based on the computation of the sample GV and on its fitting 
to a model. But are we sure that these operations can be performed under satisfactory 
conditions? Estimating and modeling the generalized variogram pose problems that pertain 
more to epistemology than to mathematical statistics. This is already the case with the 
ordinary variogram. In this context, these problems have attracted the attention of 
geostatisticians since the beginning (Matheron, 1965, Chapter XIII) and have forstered 
extensive studies (see Alfaro, 1979, and the methodological work of Matheron, 1978). This 
approach is presented in Chilès and Delfiner (1999, section 2.9). In this section we reproduce 
the results obtained by Alfaro and Matheron for the variogram and extend them in a 
straightforward manner to the generalized variogram (some early results can be found in 
Matheron, 1972). 

In the sequel, the value k is fixed, and the subscript k is usually omitted. 

Regional GV and Sample GV 

In practice, we consider a regionalized variable z(x) defined over a bounded domain D. By 
interpreting z(x) as a realization of a random function Z(x), we have provided a theoretical 
definition (4) of the generalized variogram Γ(h). Generally, however, the phenomenon under 
study is unique, and it is primarily the generalized variogram of the regionalized variable in D 
that is of interest. This GV is the regional GV defined by 

 2
R

1( ) ( )
| | h

hD
h

h z x dx
M D

Γ = ∫  (9) 

where: 

− zh(x) is the increment of order k + 1, 1 ( )k
h z x+Δ , defined by (3); 

− Dh represents the set of points x such that x + p h, p = 0, 1, ..., k, belong to D (i.e., such 
that zh(x) is defined), and |Dh| is the measure (volume) of this set; 

− M stands for the norming factor 2 2
1

k
k k

M ⎛ ⎞+
⎜ ⎟⎜ ⎟+⎝ ⎠

= . 

The regional GV is a purely deterministic and empirical quantity. If we know z(x) at every 
point of D, ΓR is completely determined. It constitutes a summary of the structural 
characteristics of the regionalized variable and, in this sense, conveys a physical significance 
independently of the probabilistic interpretation that we can construct. 

In practice, z(x) is only known at a finite number of sample points {xi : i = 1, 2, ..., N}. As the 
regional GV cannot be determined directly, we calculate the sample GV defined by 

21ˆ ( ) ( )
h

h i
i Ih

h z x
M N ∈

Γ = ∑  

where 
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− Ih is the subset of all points xi such that xi + p h, p = 0, 1, ..., k, are data points (i.e., such 
that zh(xi) can be computed); 

− Nh is the number of elements of Ih. 

Note that for k > 0, ˆ ( )hΓ  can only be computed in the case of regularly spaced data (on a grid 
or on lines), for h multiple of the data spacing. 

Estimation Variance of the Sample GV 

An immediate question arises from the previous definitions: Is the sample GV a good 
approximation of the regional GV? An experimental answer to this question is only possible 
in the rare cases of an exhaustive survey. One such case—for an ordinary variogram—is 
Narboni's (1979) exhaustive survey of the Ngolo tropical forest (see Chilès and Delfiner, 
1999, pp. 138–139, or 2012, pp. 139–140). 

Exhaustive sampling situations are exceptional, and we must consider the general case where 
the regional GV ΓR(h) cannot be determined experimentally. If we fix h and let 

2121 1( ) ( ) ( )k
h h h

k
q x z x z x

M M
+⎡ ⎤= = Δ⎣ ⎦  

we see that the expression (9) of ΓR(h) is simply the average value of qh(x) over Dh, and that 
ˆ ( )hΓ  is the average value of the Nh data qh(xi). It is reasonable to expect that if sufficient data 

are available and fairly well distributed, ˆ ( )hΓ  is close to ΓR(h). If, for example, the data are 
on a regular grid, and if h is a multiple of the grid spacing, ˆ ( )hΓ  is simply the discrete 
approximation of the integral defining ΓR(h). 

To go further, we have to specify the behavior of the regionalized variables z(x) and qh(x). In 
our models we interpret z(x) as a realization of a random function Z(x), and then qh(x) is a 
realization of the random function 

 21( ) ( )h hQ x Z x
M

=  (10) 

We assume here that Z(x) is an IRF–k with GC K(h), so that Zh(x) is an (order-2) SRF. We 
also assume that the random function Qh(x) has second-order moments and is stationary. Let 
Gh(x' – x) denote the covariance of Qh(x) and Qh(x'). To avoid weighting down the notation, 
ΓR and Γ̂  will now designate the random versions of the regional GV and the sample GV, or 
explicitly: 

 R
1( ) ( )

| | h
hD

h
h Q x dx

D
Γ = ∫  (11) 

 1ˆ ( ) ( )
h

h i
i Ih

h Q x
N ∈

Γ = ∑  (12) 
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Naturally, 

R
ˆE[ ( )] E[ ( )] ( )h h hΓ = Γ = Γ  

since Qh(x) has for expectation Γ(h). We can thus characterize the error incurred by taking the 
sample GV for the regional GV by the variance of R

ˆ ( ) ( )h hΓ − Γ . Considering the respective 
definitions of each term (average of Nh values Qh(xi) for one, average of Qh(x) over Dh for the 
other) brings us back to a standard calculation of estimation variance to be carried out with 
the covariance Gh(x' – x) of the SRF Qh(x): 

 
R 2

2

1 2ˆVar ( ) ( ) ( ) ( )
| || |

1 ( )

h h h
h

h h

h h iD D D
i Ih hh

h j i
i I j Ih

h h G x x dx dx G x x dx
N DD

G x x
N

∈

∈ ∈

⎡ ⎤ ′ ′Γ −Γ = − − −⎣ ⎦

+ −

∑∫ ∫ ∫

∑ ∑
 (13) 

Gh(x' – x), however, is a fourth-order moment of ALC–k's of the IRF–k Z(x). Determining the 
precision of the calculation of the second-order moment thus requires prior knowledge of the 
fourth-order moment. But the latter can generally be evaluated with mediocre precision, 
related to the eighth-order moment, and so on. This way the problem can be displaced 
endlessly. We can nevertheless determine orders of magnitude by considering classic cases of 
spatial distribution. The Gaussian case will be examined first, and then indications will be 
given for SRFs with skewed marginal distributions. 

Estimation Variance in the Gaussian Case 

As demonstrated in Appendix A, in the case of a Gaussian IRF–k, the covariance of Qh is 
directly derived from the covariance of Zh: 

 2
2

2( ) ( )h hG x x C x x
M

′ ′− = −  (14) 

where Ch(l) is the covariance defined in (6) and expressed by (7) in terms of the GC K(h). 

In case of regularly located data, the estimation variance is essentially linked with the 
irregular—that is, uneven—terms of lower degree of the covariance in the vicinity of the 
origin. As demonstrated in Appendix B, the estimation variance can be computed, to a first 
approximation, as if the variogram of Qh behaved as 4 Γ(h) [K(x' – x) – K(0)]. As a 
consequence, for 1D data with spacing d, the relative estimation variance is 

2
R2

E 2

ˆVar ( ) ( ) 4( )
( )( )

d

h

h h
S h

h Nh

⎡ ⎤Γ − Γ σ⎣ ⎦=
ΓΓ

 

where 2
dσ  is the estimation variance of the elementary mesh by its central value for a variable 

whose covariance has the same irregular terms as K(·) near the origin, and where Nh is the 
number of available increments of order k + 1. Thus, provided that Nh is large enough, we are 
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sure of being able to evaluate ΓR(h) with good precision: Γ̂  is a consistent estimator of ΓR. 
Appendix B gives further results concerning a power-law behavior. 

Alfaro (1979) has computed 2
E ( )S h  in the case of a variogram (k = 0) for data sets of 21 points 

in 1D and 5 × 5 points in 2D. We have carried out similar computations with an improved 
precision, an extension to a GV of order 1, 2, or 3, and a larger number of data (program 
MARKO; source code of 1989 in Appendix D). Figure 5 presents the relative estimation 
standard deviation SE(h) for k = 0 and a spherical or power-law variogram. The top of the 
figure is the 1D case: A segment of length L is sampled regularly by 121 data points. The 
bottom of the figure is the 2D case: A square L × L is sampled by a grid of 13 × 13 data 
points. Figures 6 and 7 present similar results for k = 1 and 2, respectively. The horizontal 
scale is adapted to the largest possible lag L / (k + 1) for ΓR and Γ̂ . These figures show that: 

• The precision improves with the regularity of the GC (large range or high power α). 

• In R2, the precision is practically of the same order of magnitude for all values of h 

(except when h reaches the domain size), whereas in R1 it is better for medium distances 
than for small distances. 

• The precision decreases only slightly when the degree k increases; let it be recalled that 
Γ(h) gives information about K(h), K(2h), ..., K((k + 1) h). 

• Quantitatively, SE(h) is usually of the order of 10%, which can be considered 
satisfactory due to the limited number of data considered here. 

Estimation Variance in the General Case 

To give a glimpse of the precision that one can expect with non-Gaussian random functions, 
let us consider the case k = 0 with three different SRFs already considered by Alfaro (1979), 
with an exponential covariance K(h) = C e–|h| / a. These SRFs are derived from independent 
standard Gaussian SRFs U(x) and V(x) with the same correlogram ρ(h): 

i) Z1(x) = U(x) V(x): Its marginal distribution has the probability density function 
1

0( ) (| |)f z K zπ= , where K0 is the order-0 Bessel function of the second kind. Its 
covariance is C(h) = ρ(h)2. 

ii) Z2(x) = U(x)2: Its marginal distribution is gamma with parameters 1/2 and 1/2 (chi-
square distribution on one degree of freedom). Its covariance is C(h) = 2 ρ(h)2 and its 
coefficient of variation is 2 1.414 . 

iii) Z3(x) = eU(x): It is a lognormal SRF with covariance C(h) = e (eρ(h) – 1), thus with a fairly 
high coefficient of variation 1 1.311e − . 

The three random functions have been selected because it is not too difficult to calculate the 
covariance Gh(x' – x) from the results relative to Gaussian random variables—at least when 
k = 0 (Alfaro, 1979). The expression of Gh(x' – x) for these three random functions is given in 
Appendix A. 
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FIGURE 5.  Estimation of the regional variogram: relative standard deviation SE(h) in the Gaussian 
case for a spherical covariance with range a (on the left) and for a variogram of type |h|α (on the right). 
Top: 121 points sample a segment of length L. Bottom: 13 × 13 points sample a square L × L. 
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FIGURE 6.  Estimation of the regional GV of order 1: relative standard deviation SE(h) in the 
Gaussian case for a spherical covariance with range a (on the left) and for a power-law or power-
logarithmic GC with shape parameter α (on the right). Top: 121 points sample a segment of length L. 
Bottom: 13 × 13 points sample a square L × L. 
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FIGURE 7.  Estimation of the regional GV of order 2: relative standard deviation SE(h) in the 
Gaussian case for a spherical covariance with range a (on the left) and for a power-law or power-
logarithmic GC with shape parameter α (on the right). Top: 121 points sample a segment of length L. 
Bottom: 13 × 13 points sample a square L × L. 
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FIGURE 8.  Estimation of the regional variogram: relative standard deviation SE(h) for different 
spatial distributions, for an exponential variogram with scale parameter L (on the left) and L/10 (on the 
right). Top: 101 points sample a segment of length L. Bottom: 11 × 11 points sample a square L × L. 
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An exponential covariance has been considered, because it is very easy to obtain it in the first 
two cases (ρ(h) must also be exponential, with twice the scale parameter of C(h)). As for the 
lognormal SRF, we have used a correlogram ρ(h) giving a covariance C(h) as close as 
possible to the exponential model (an exponential model with variance 0.5 and scale 
parameter 1.6 a, plus a spherical model with variance 0.5 and range 2.7 a, where a is the 
desired scale parameter for C(h)). 

The calculations have been carried out with the program MARCO (source code of 1989 in 
Appendix E). Figure 8 presents the relative estimation standard deviation SE(h) for two 
different values of the scale parameter and for sampling schemes similar to those considered 
in Figure 5, except that we now have 101 data points in 1D or 11 × 11 data points in 2D. As in 
the similar study carried out by Alfaro (1979), it shows that: 

• The sample variogram is less precise than in the Gaussian case. 
• It is acceptable for distributions such as those of Z1 and Z2 which are not too long tailed. 

• The sample variogram of a variable with a long-tailed distribution, like Z3, bears only a 
distant relationship to the regional variogram. Besides, this last result is linked with a 
well-known phenomenon: a proportional effect. 

Conclusions on the Estimation of the GV 

The precision of the estimation of a GV is similar to that of an ordinary variogram. It is 
satisfactory in the Gaussian case. Like for the calculation of an ordinary variogram, 
inhomogeneities in the studied domain or in the data must be taken into account. In case of 
variables whose increments Zh(x) have strongly non-Gaussian distributions (especially long 
tails), the precision of the sample GV may be very poor. Robust techniques can transform the 
data into a more regular variable (logarithmic transformation, for example). Robust 
techniques developed for the ordinary variogram calculation can be directly transposed to the 
GV (see, e.g., Cressie, 1991; Chilès and Delfiner, 1999, section 2.2.5). But let it be borne in 
mind that the applications usually need the GV of Z(x) and not of some smoother variable. 

THEORY OF THE FLUCTUATION OF THE GENERALIZED VARIOGRAM 

Fluctuation Variance of the Regional GV 

Even if we knew the value of the regionalized variable z(x) at every point of the studied 
domain D and were capable of calculating the regional GV ΓR(h) for any vector h, this would 
exhibit so many variations of detail that we would have to simplify it to be able to express it 
in a usable form. That amounts to considering that two very similar regional GVs have the 
same parent GC K(h) and GV Γ(h). This simplification represents exactly a passage to the 
mathematical expectation: If one considers the studied regionalized variable as the realization 
of an IRF–k, namely as one realization among a set of similar realizations, the regional GV of 
the regionalized variable is one among a family of regional GVs whose mean, or in 
probabilistic terms mathematical expectation, is a theoretical GV Γ(h). 
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The passage to the IRF–k model enables us to define criteria for the precision required during 
modeling. In the framework of this model, the deviation ΓR(h) – Γ(h) is a random variable. Its 
expectation is zero, and we can quantify the possible deviations by the fluctuation variance 
Var[ΓR(h) – Γ(h)]. Let us therefore consider a given value of h and use the notations of the 
previous section. In view of definition (11) of ΓR(h), the variance of the fluctuation of ΓR(h) is 
simply the variance of the fluctuation of the mean of Qh(x) in Dh. It can therefore be expressed 
in terms of the covariance Gh(x' – x) of the SRF Qh(x): 

 [ ]R 2
1Var ( ) ( ) ( )

| | h h
hD D

h
h h G x x dx dx

D
′ ′Γ −Γ = −∫ ∫  (15) 

Calculating this variance again involves the fourth-order moment of the IRF–k Z(x). Given the 
same remarks as in the preceding section, let us first examine the Gaussian case. 

Fluctuation Variance in the Gaussian Case 

In view of the expression (14) for Gh(x' – x) in the Gaussian case, (15) is expressed as a 
function of Ch(·): 

[ ] 2
R 2

2Var ( ) ( ) ( )
| | h h

hD D
h

h h C x x dx dx
D

′ ′Γ −Γ = −∫ ∫  

The explicit calculation is complex, so for simplification we will first consider the case where 
K(x' – x) near the origin is equivalent to (–1)1+⎣α/2⎦ b |x' – x|α (again the even terms up to 
degree 2k have no influence on the GV and are not considered here). Matheron (1978, p. 113) 
has stated that for small h, the relative fluctuation variance is, to a first approximation, of the 
form 

[ ]R2 4 4 2
F 2

Var ( ) ( )
( ) | | | |

( )
k nh h

S h A h B h
h

+ − αΓ −Γ
= +

Γ
 

where n is the dimension of the space (1, 2, or 3) (in fact Matheron considers the case k = 0; 
he gives the proof in R1 in Matheron, 1970, section 2.10.3; the proof in Rn for k ≥ 0 is given 

in Appendix C). This relative variance tends to zero with |h| if and only if α < 2k + 2. 

Micro-Ergodicity 

In the above situation, the convergence of ΓR(h) / |h|α to a constant b' = Bα b when h → 0 is 
ensured, provided that the IRF–k Z(x) is not differentiable k + 1 times (Bα is given by (8)). 
The parameter b then has an objective meaning: If we increase the number of sample points 
by refining the sampling grid, we can estimate it with precision. This is the concept of micro-
ergodicity, introduced by Matheron (1978, pp. 109–114); Cressie, 1991, calls this “infill 
asymptotics”). It differs from conventional ergodicity, where one extends the data domain to 
infinity, which is of little interest to us because we always work in a bounded domain D. 
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The micro-ergodicity of the GV in the neighborhood of the origin is therefore established, 
provided that K(h) is not too regular (we find ourselves in an inverse situation to that of the 
estimation of the regional GV). This is easily explained: If the IRF–k is differentiable k + 1 
times, it admits a local expansion with a polynomial of degree higher than k—that is, the 
residuals are more regular than the drift. In this case, the model is not adapted, and it is 
advisable to use either a higher degree k or a deterministic model (at least at the scale of a 
small domain). A well-known example is the Gaussian covariance 2 2( ) exp( | | / )K h h a= − , 
which is indefinitely differentiable and can be developed as an infinite sum of even terms. 

In geostatistical applications, the condition α < 2k + 2 concerning the behavior of K(h) near 
the origin is usually met (note that it coincides with the condition for (–1)1 + ⎣α/2⎦ |h|α to be a 
GC from h = 0 to infinity). So the determination of Γ(h) in the neighborhood of the origin is 
possible. On the other hand, the fluctuation variance increases very rapidly with h (except if 
K(h) has a very small range with respect to the domain D). 

Figures 9, 10, and 11 show the relative fluctuation standard deviation curves SF(h) for k = 0, 1, 
and 2, respectively, for the same GC models as in Figures 5 to 7 for the relative estimation 
standard deviation curves SE(h). The computations were carried out with program MARKO 
(Appendix D) by discretizing the domain D by 1201 points in 1D and by 121 × 121 points in 
2D. It can be observed that: 

• In the 1D case, all the curves rise from 0 for h = 0 to 2 for h = L / (k + 1), as at this 
distance only one increment is available for calculating Γ(h). 

• The more regular the GC (large range or high α), the larger the fluctuations; on the 
contrary, in the limit case of a pure nugget effect, the fluctuation variance is zero, except 
for h = L / (k + 1). Note that this observation is the opposite to that made about the 
estimation of the GV. 

• The possible fluctuations in R2 are not as strong as in R1. This is a nice property 

because most geostatistical applications are in 2D or even in 3D. 

• The fluctuations increase with the degree k, mainly because the maximum distance for 
computing ΓR(h) is the size of the domain divided by k + 1. 

• Even in R2, apart from the case of a small range, the theoretical GV and the regional 
GV may have only a distant relationship if |h| is greater than half the maximum distance 
of possible computation of the regional GV (if not sometimes less). This is not serious 
insofar as geostatistical estimations depend much more on the behavior of the GC at 
small distances than at large distances. From a practical point of view, we can accept 
that the GV generally has no objective meaning at large distances and that it is pointless 
to try to refine the associated fit. 
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FIGURE 9.  Fluctuation of the regional variogram: relative standard deviation SF(h) in the Gaussian 
case for a spherical covariance with range a (on the left) and for a variogram of type |h|α (on the right). 
Top: the domain is a segment of length L. Bottom: the domain is a square L × L. 
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FIGURE 10.  Fluctuation of the regional GV of order 1: relative standard deviation SF(h) in the 
Gaussian case for a spherical covariance with range a (on the left) and for a power-law or power-
logarithmic GC with shape parameter α (on the right). Top: the domain is a segment of length L. 
Bottom: the domain is a square L × L. 
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FIGURE 11.  Fluctuation of the regional GV of order 2: relative standard deviation SF(h) in the 
Gaussian case for a spherical covariance with range a (on the left) and for a power-law or power-
logarithmic GC with shape parameter α (on the right). Top: the domain is a segment of length L. 
Bottom: the domain is a square L × L. 
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FIGURE 12.  Fluctuation of the regional variogram: relative standard deviation SF(h) for different 
spatial distributions, for an exponential variogram with scale parameter L (on the left) and L/10 (on the 
right). Top: the domain is a segment of length L. Bottom: the domain is a square L × L. 
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Fluctuation Variance in the General case 

The conclusions are less encouraging for random functions that are clearly non-Gaussian, as 
has been shown by Alfaro (1979). Taylor expansions show that the behavior of 2

F ( )S h  at the 
origin is 

− gamma SRF Z1(x): 
2

2 2 /
F 2( ) 2 (1 )L aa aS h e

L L
−= − −  h << L 

− Bessel SRF Z2(x): 
2

2 2 /
F 2( ) (1 )

2
L aa aS h e

L L
−= − −  h << L 

− lognormal SRF Z3(x): 
4

2
F ( ) 27.30

2
e a aS h

L L
=  h << L 

These values are not equal to zero, so that these SRFs are not micro-ergodic. To obtain a 
small fluctuation variance, let say 0.01 (that is, SF(h) < 0.1), we need L = 200 a for the gamma 
SRF, L = 100 a for the Bessel SRF, and L = 2730 a for the lognormal SRF, that is, totally 
unreasonable values (there is little chance that an application conforms to a stationary model 
over such a domain). For h = L, 2

F ( )S L is equal to 8 for the gamma SRF, 5 for the Bessel SRF, 

in comparison to 2 for a Gaussian SRF. For the lognormal SRF, 2
F ( )S L  depends on ρ(L); it is 

equal to 3 2( 1) ( 2 2) / 2 57.47e e e e+ + + −  if ( ) 0Lρ = . 

This is confirmed by Figure 12, which shows the results obtained for the same IRF–0's as in 
Figure 8. The computations were carried out with program MARCO (Appendix E) by 
discretizing the domain D by 1001 points in 1D and by 101 × 101 points in 2D. Two 
conclusions can be drawn: 

• The fluctuation variance can be much larger than in the Gaussian case. 

• The relative variance no longer necessarily tends to zero when the lag h tends to zero: In 
other words, micro-ergodicity is no longer ensured, and the regional GV does not even 
reproduce the behavior near the origin of the theoretical GV. 

Conclusions on the Fluctuations of the Regional GV 

The possible fluctuations of the regional GV are similar to those of an ordinary variogram. 
They are sufficiently small, at short distances, to ensure micro-ergodicity when the variable is 
more or less Gaussian. On the contrary, micro-ergodicity is not achieved for strongly non-
Gaussian variables. 

In practice, a lack of micro-ergodicity is frequently reflected in a proportional effect. If we 
treat it as such, which amounts to working on a variable conditioned on its local mean, we end 
up with a more satisfactory model. It is generally better to use methods based on prior 
transformation of the data into Gaussian variables (lognormal kriging, disjunctive kriging). 
Micro-ergodicity is also no longer ensured for an indicator, or more generally for a mosaic RF 
(even if the marginal distribution is Gaussian): If the study domain D is not large, a realization 
can very well be constant and thus give a regional variogram that is identically zero. 
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CONCLUSION 

The generalized variogram is an operational tool for modeling nonstationary phenomena. It 
has the advantages of the ordinary variogram: The sample GV can be calculated, displayed, 
interpreted in terms of behavior at the origin and at long distances, fitted graphically 
according to a generalized covariance model. Its link with the generalized covariance is very 
simple. In particular the polynomial/logarithmic GC model with nugget effect corresponds to 
a polynomial generalized variogram with positive coefficients. The limitation to the use of the 
generalized variogram is the required data configuration: data on grids or along profiles. This 
condition is nevertheless fulfilled in many situations. Applications are of two types: 

i) identification of the generalized covariance: Apart the case study presented above, see 
Chilès and Gable (1984) for geothermal data, and Chilès and Gentier (1993) for the 
topography of a single fracture. 

ii) check of geostatistical simulations: Examples are provided by Orfeuil (1972) and by 
Pardo-Igúzquiza and Dowd (2003). 
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APPENDIX A 

EXPRESSION OF Gh(x' – x) 

As in the section on the inference of the GV, a given degree k is considered and the notational 
dependence on k is skipped. 

By definition, Gh(x' – x) is the covariance of the SRF 1 2( ) ( )h hMQ x Z x= , where 
1( ) ( )k

h hZ x Z x+= Δ  is the increment of order k + 1 defined by (3), and M is the norming factor 
2 2

1
k

k k
M ⎛ ⎞+

⎜ ⎟⎜ ⎟+⎝ ⎠
= . As Gh(x' – x) is a fourth-order moment of the IRF–k Z(x), it depends not only on 

the GC K(h) but also on the spatial distribution of Z(x). 

Multi-Gaussian Case 

The calculation of Gh(x' – x) in the multi-Gaussian case is based on the following property: 

If U1, U2, U3, U4 are N (0, 1) random variables, with correlation coefficients ρi j, and if the 
random vector (U1, U2, U3, U4)' is Gaussian, then 

 [ ]1 2 3 4 12 34 13 24 14 23E U U U U = ρ ρ + ρ ρ + ρ ρ  (16) 

It follows that the centered covariance of 2
1U  and 2

2U  is 

( )2 2 2
1 2 12Cov , 2U U = ρ  

Consequently 

( ) ( ) [ ]2 2
2 2

2 2( ) Cov ( ), ( ) Cov ( ), ( ) ( )h h h h h hG x x Q x Q x Z x Z x C x x
M M

′ ′ ′ ′⎡ ⎤− = = = −⎣ ⎦  

where Ch(l) is the covariance defined in (6) and expressed by (7) in terms of the GC K(h). 

Bessel Case Z1(x) = U(x) V(x) 

Consider a random function Z1(x) = U(x) V(x), where U(x) and V(x) are two independent 
Gaussian N (0, 1) SRFs with the same correlogram ρ(h). As U and V are independent, the 
calculation of Gh(x' – x) is based on (16). 
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If k = 0, we obtain: 

2 2 2 4 4 4

2 2 2 2

2 2 2 2

2

( ) 2 ( ) ( ) ( ) 3 ( ) ( ) ( )

4 ( ) ( ) 4 ( ) ( )

2 ( ) ( ) ( ) ( )
4 ( ) ( ) ( ) 4 ( ) ( ) ( )

2 ( )

hG x x x x x x h x x h x x x x h x x h

x x x x h x x x x h

h x x x x h x x h
h x x x x h h x x x x h

h

′ ′ ′ ′ ′ ′ ′− = ρ − + ρ − − + ρ − + + ρ − + ρ − − + ρ − +

′ ′ ′ ′− ρ − ρ − − − ρ − ρ − +
′ ′ ′+ ρ ρ − + ρ − − ρ − +
′ ′ ′ ′− ρ ρ − ρ − − − ρ ρ − ρ − +

+ ρ ρ 2( ) ( ) 2 ( ) ( ) ( )x x h x x h x x x x h x x h′ ′ ′ ′ ′− − ρ − + + ρ − ρ − − ρ − +
 

Gamma (chi-2) Case Z2(x) = U(x)2 

Consider a random function Z2(x) = U(x)2, where U(x) is a Gaussian N (0, 1) SRF with 
correlogram ρ(h). The calculation of Gh(x' – x) calls for moments of order 8 of the SRF U. In 
fact only moments of the centered SRF H(x) = U(x)2 – 1 are needed. The expression of these 
moments is based on the following property: 

If U1, U2, U3, U4 are N (0, 1) random variables, with correlation coefficients ρi j, and if the 
random vector (U1, U2, U3, U4)' is Gaussian, then the fourth-order moment of the centered 
square values 2 1, 1, 2,3, 4i iH U i= − = , is 

[ ] 2 2 2 2 2 2
1 2 3 4 12 34 13 24 14 23 12 23 34 41 12 34 13 24 23 41 13 24E 4( ) 16( )H H H H = ρ ρ +ρ ρ +ρ ρ + ρ ρ ρ ρ +ρ ρ ρ ρ +ρ ρ ρ ρ  

Applying this relation to the case k = 0, one finds that: 

2 2 2

4 4

2 2 2

2 2

2 2 2

( ) 8 2 ( ) ( ) ( )

6 ( ) ( )

16 ( ) ( ) ( ) ( ) ( )

4 ( ) ( )

24 ( ) ( ) ( )

32 ( ) ( )

hG x x x x x x h x x h

x x h x x h

h x x x x x x h x x h

x x h x x h

x x x x h x x h

h x x

⎡ ⎤′ ′ ′ ′− = ρ − + ρ − − + ρ − +⎣ ⎦
⎡ ⎤′ ′+ ρ − − + ρ − +⎣ ⎦
⎡ ⎤ ⎡ ⎤′ ′ ′ ′+ ρ + ρ − ρ − + ρ − − ρ − +⎣ ⎦ ⎣ ⎦
⎡ ⎤′ ′+ ρ − − ρ − +⎣ ⎦

⎡ ⎤′ ′ ′− ρ − ρ − − + ρ − +⎣ ⎦
′− ρ ρ − [ ]( ) ( )x x h x x h′ ′ρ − − + ρ − +

 

Lognormal Case Z3(x) = eU(x) 

Consider a random function Z3(x) = eU(x), where U(x) is a N (0, 1) SRF with correlogram ρ(h). 
The calculation of Gh(x' – x) is based on the following property: 

If Ui, i = 1, 2, ..., p, are N (0, 1) random variables, with correlation coefficients ρi j, and if the 
random vector (U1, U2, …, Up)' is Gaussian, then 
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2 2E exp exp( / 2) withi i i j ij
i i j

a U a a
⎡ ⎤⎛ ⎞

= σ σ = ρ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑ ∑∑  

Using this relation, one gets in the case k = 0: 

( )

2 4 ( ) 2 4 ( ) 2 4 ( )1 1 1
2 4 4

2 1 ( ) 2 ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

22 ( ) 2 ( ) ( ) ( ) ( )

( )

x x x x h x x h

h x x x x h h x x x x h
h

h x x x x h x x h h

e e e

G x x e e e

e e e

′ ′ ′+ ρ − + ρ − − + ρ − +

′ ′ ′ ′+ρ + ρ − + ρ − − +ρ + ρ − + ρ − +

′ ′ ′ρ + ρ − +ρ − − +ρ − + ρ

⎡ ⎤+ +⎢ ⎥
⎢ ⎥′ − = − −
⎢ ⎥
⎢ ⎥+ − −⎢ ⎥⎣ ⎦
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APPENDIX B 

ESTIMATION VARIANCE IN THE GAUSSIAN CASE 

Consider the case of a Gaussian IRF–k and of regularly located data. According to (11), (12), 
and (13), the estimation variance R

ˆVar ( ) ( )h h⎡ ⎤Γ −Γ⎣ ⎦  is the variance of estimation of the 

average value of the variable Qh within Dh by the average of Nh regularly located data. The 

covariance of Qh is 2
2

2( ) ( )h hG x x C x x
M

′ ′− = −  according to (14). The variance of estimation 

is essentially linked with the irregular—that is, uneven—terms of lower degree of the 
covariance Gh in the vicinity of the origin (Matheron, 1965, pp. 192–208). Indeed, the even-
degree terms have no influence on the variance, and among the other terms, those of lower 
degree cause the greater part of the variance, notably the lowest-degree term, known as the 
principal irregular term. 

In the present case, for |x' – x| << h, the development of Ch(x' – x) at the origin is obtained by 
replacing K(x' – x + ph) by K(ph) in (7), except for the term corresponding to p = 0, which 
leads to 

[ ]2 2
1

( ) (0) ( ) (0)k
h h k

C x x C K x x K⎛ ⎞+
⎜ ⎟⎜ ⎟+⎝ ⎠

′ ′− + − −  

or equivalently 

[ ]( ) ( ) ( ) (0)hC x x M h K x x K′ ′− Γ + − −  

It follows that the principal irregular term of Gh(x' – x) is the principal irregular term of 

[ ]4 ( ) ( ) (0)h K x x K′Γ − −  

The estimation variance of ΓR(h) (average value of Qh(x)) can be computed therefore, to a 
first approximation, as if Qh had a variogram with a behavior near the origin equal to 
K(0) – K(x' – x) multiplied by 4 Γ(h). The GC K(·) is defined up to an even polynomial, but 
this is not important, as even terms bring no contribution to the estimation variance. 

For 1D data at mesh d, we then have 

 
2

R
2

ˆVar ( ) ( ) 4
( )( )

d

h

h h

h Nh

⎡ ⎤Γ − Γ σ⎣ ⎦
ΓΓ

 (17) 

where 2
dσ  is the estimation variance of the elementary mesh by its central value for a variable 

with a covariance equal to K(·) near the origin, and where Nh is the number of available 
experimental increments of order k + 1. 
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For example, if a segment of length L is sampled by N = L / d points, and if h = jd, ˆ ( )jdΓ  can 
be computed from Nh = N – (k + 1) j increments. If K(x' – x) is of the form (–1)1+⎣α/2⎦ b |x' – x|α 
with 0 < α < 2k + 2 and b > 0, then one has 

1( ) ( 1)h bB h α+ ⎣α/2⎦
αΓ = −  

where Bα (which depends on k) is given by (8). And it is found to a first approximation 
(Matheron, 1965, pp. 205 and 82) that 

2 1( 1)d bT d+ ⎣α/2⎦ α
ασ = −       with      1

2
2sin

1
RT ⎛ ⎞α π +α

⎜ ⎟α ⎝ ⎠
= −

+ α
 

where Rβ is the generalized Bernoulli number 

1
1

(1 ) 1
2 n

R
n

∞

β β β− β
=

Γ + β=
π ∑  

Here Γ(·) denotes the Euler gamma function. In particular: 

 T1 = –1/6 T3 = 1/60 T5 = –1/126 

Hence the relative variance (17) is: 

 R
2

ˆVar ( ) ( ) 4 1
( 1)( )

jd jd T
N k j Bjd j

α
α

α

⎡ ⎤Γ −Γ⎣ ⎦
− +Γ

 (18) 

Similarly, if K(x' – x) is of the form (–1)m+1 b |x' – x|2m log |x' – x| near the origin, one has 

1 2
2( ) ( 1) | |m m

mh b B h+Γ = −  

where the first B2m values can be found in the expression of Γ(h) for a polynomial/logarithmic 
GC. And to a first approximation (Matheron, 1965, pp. 206 et 82) 

2 1 2
2( 1) m m

d mbT d+ ′σ = −       with      1
2 1 2( 1)

1 2
m

m mT R
m

+
+

π′ = −
+

 

where Rβ is defined as above. In particular 

 T'2 = 0.06090 T'4 = –0.01597 T'6 = 0.01208 

Hence the expression (18) remains valid by taking α = 2m and by replacing T by T' (their 
definitions differ by a multiplicative factor). 
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APPENDIX C 

FLUCTUATION VARIANCE IN THE GAUSSIAN CASE 

Consider a Gaussian IRF–k Z(x). According to (14) and (15), the fluctuation variance of the 
regional GV of domain D is 

[ ] 2
R 2 2

2Var ( ) ( ) ( )
| | h h

hD D
h

h h C x x dx dx
M D

′ ′Γ −Γ = −∫ ∫  

From a practical point of view, the double integral can be expressed as a simple integral using 
the change of variable u = x' – x (Cauchy algorithm): 

 [ ] 2
R 2 2

4Var ( ) ( ) ( ) ( )
| | h h

h
h h R u C u du

M D
Γ −Γ = ∫  (19) 

where Rh is the geometrical covariogram of Dh, that is, 1 *1
h hh D DR =  if 1

hD  denotes the 

indicator function of domain Dh and 1
hD  denotes its transpose. 

Behavior at Short Distances 

Consider now the behavior of this variance for small values of h. If | | 0h , then (19) 
becomes, to a first approximation: 

 [ ] 2
R 2 2

4Var ( ) ( ) ( ) ( )
| | hh h R u C u du

M D
Γ −Γ ∫  (20) 

where the geometric covariogram R of D replaces Rh. Ch is the covariance of the increment of 

order k + 1, which is defined by (3). This increment is of the form 
1

1

0
( ) ( )

k
k

ih
i

Z x Z x ih
+

+

=
Δ = λ +∑  

with 11( 1) kk i
i i

⎛ ⎞++ +
⎜ ⎟⎜ ⎟
⎝ ⎠

λ = − . Therefore, Ch is of the form 

 
1 1

0 0
( ) ( ( ) )

k k

h i j
i j

C u K u j i h
+ +

= =
= λ λ + −∑∑  (21) 

Let us separate the computation of the integral defined in (20) in two parts: 

i) |u| > (k + 1) |h| 

Suppose that K is regular enough to be locally expressed from its derivatives, except around 0 
(this is not always the case, strictly speaking; an example is a spherical covariance around a 
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lag equal to the range; in such a case, it suffices to slightly regularize the covariance). So for 
|v| < |u| we have 

( )

0

( )( )
!

p
p

p

K uK u v v
p

∞

=
+ ∑  

Because |(j – i) h| < |u|, formula (21) becomes 

( ) 1 1

0 0 0

( )( ) ( )
!

p k k
pp

h i j
p i j

K uC u j i h
p

∞ + +

= = =
λ λ −∑ ∑∑  

(the derivatives at u are taken along the orientation of vector h). If p is odd, the double sum on 
i and j is null due to symmetry. If p is even, this double sum coincides with the variance of 

1 ( )k
h Z x+Δ  for a covariance |h|p, with the exception that |h|p is not necessarily a GC. If p ≤ 2k, 

it is a GC (up to the sign), and the associated variance is null. The first non-zero term is then 
associated with p = 2k + 2, so that  

2 2 (2 2)( ) ( )k k
hC u h K u+ +τ  

with 

1 1
2 2

0 0

1 ( )
(2 2)!

k k
k

i j
i j

j i
k

+ +
+

= =
τ = λ λ −

+ ∑∑  

It follows that the part of (20) corresponding to the integration domain |u| > (k + 1) |h| is, to a 
first approximation, of the form 

4 4| | kA h +′  

ii) |u| ≤ (k + 1) |h| 

The behavior of the GC in the vicinity of the origin plays the main role in the calculation of 
(20). Suppose that the principal irregular term of K(h) is (–1)1 + ⎣α/2⎦ b |h|α. Then (21) becomes: 

1 1
1

0 0
( ) ( 1) ( )

| | | |

k k

h i j
i j

h uC u b h j i
h h

α+ +
α+ ⎣α/2⎦

= =
− λ λ − +∑∑  

Since h is small, by substituting v = u / |h| one finds: 

2
1 1

2 2 2
| | ( 1)| | | | 1

0 0
( ) ( ) (0) | | ( )

| |

k k
n

h i ju k h v k
i j

hR u C u du R b h j i v dv
h

α+ +
α+

≤ + ≤ +
= =

⎡ ⎤
⎢ ⎥λ λ − +
⎢ ⎥⎣ ⎦
∑∑∫ ∫  

where n is the space dimension. Hence the part of (20) corresponding to the integration 
domain |u| ≤ (k + 1) |h| is, to a first approximation, of the form: 

2| | nB h α+′  
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As a consequence of (i) and (ii), since a behavior in (–1)1 + ⎣α/2⎦ b |h|α in the vicinity of the 
origin is considered for K(h) (behavior which is the same, up to a multiplicative factor, for the 
GV), it is found that for small h values the relative fluctuation variance takes the form: 

[ ] 4 4 2R2
F 2

Var ( ( ) ( )
( )

( )
k nh h

S h A h B h
h

+ − αΓ − Γ
= +

Γ
 

Explicit Calculation for Some GCs in the 1D Case 

The explicit calculation of (19) is simple in the 1D case. Consider that the domain D is a 
segment of length L. Dh is then a segment of lenght Lh = L – (k+1) h, and its geometrical 
covariogram is Rh(u) = sup(Lh – |u|, 0). Formula (19) then becomes 
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ii) k = 1 K(h) = –h 
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At short distances, the precision remains the same as for k = 0. 

iii) k = 1 K(h) = h3 
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At short distances, the precision is only slightly less than for a linear covariance. 
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iv) k = 0 K(h) = e– h / a 
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From Taylor expansions at order 3 near 0 or L, we obtain: 
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The value of 2
F ( / 2)S L  decreases from 1 to 0 when L / a increases from 0 (linear 

variogram) to ∞ (pure nugget effect). It is about 0.8616 when L = a. 
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APPENDIX D 

Program MARKO 

Computation of the Fluctuation Variance and of the Estimation Variance 
of the Generalized Variogram 

 in the Gaussian Case 

 
C     PROGRAMME MARKO 
C 
C 
C     Objet 
C        Calcul de la variance de fluctuation et de la variance 
C        d'estimation du variogramme generalise regional d'un rectangle 
C        sous les conditions suivantes : 
C           - discretisation du rectangle par NDX0 * NDY0 points; 
C           - reconnaissance par NPX0 * NPY0 points a maille reguliere 
C             (dispositif ferme); 
C           - loi gaussienne. 
C 
C        NDX0, NDY0, NPX0 et NPY0 doivent etre de la forme : 
C           - NDX0 = 1 + LX*NX*(KDEG+1)     NDY0 = 1 + LY*NY*(KDEG+1) 
C           - NPX0 = 1 +    NX*(KDEG+1)     NPY0 = 1 +    NY*(KDEG+1) 
C 
C        L'acquisition des parametres limite le calcul a deux cas : 
C           - segment 1-D :   NDX0=ND0   NDY0=1     NPX0=NP0   NPY0=1 
C           - carre   2-D :   NDX0 = NDY0 = ND0     NPX0 = NPY0 = NP0 
C 
C        Parametres 
C           - NDIM  : Dimension de l'espace (1 ou 2) 
C           - KDEG  : degre k du variogramme generalise (0 a 3) 
C                     (k=0 pour un variogramme ordinaire) 
C           - ITYPE : type de covariance generalisee (1 a 5) 
C           - ALPHA : portee, ou parametre Alpha du modele h**Alpha 
C                     ou h**Alpha*Log(h) si Alpha pair 
C           - ND0   : discretisation du segment ou du carre 
C           - NP0   : reseau des points experimentaux 
C 
C        Notations 
C           COVG : covariance generalisee K(h) 
C           COVQ : covariance quadratique G(x-y;h)  (c'est la covariance 
C                  de la F.A. Q(x;h) = carre normalise de  
C                  l'accroissement d'ordre KDEG+1 pour le pas h) 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION U(72722) 
      INTEGER ADCOVG,ADCOVQ 
      CHARACTER*24 FICIN,FICOUT 
C 
C     La dimension de U permet a 2-D d'aller jusqu'a ND0=121 
      DATA NDIMU/72722/ 
C 
C 



 47

    1 WRITE(3,3001) 
 3001 FORMAT(' Fichier en entree >',$) 
      READ(1,1001) FICIN 
 1001 FORMAT(A24) 
      IF(FICIN.NE.' ') THEN 
         OPEN(10,FILE=FICIN,STATUS='OLD',ERR=1) 
      ENDIF 
    2 WRITE(3,3002) 
 3002 FORMAT(' Fichier en sortie >',$) 
      READ(1,1002) FICOUT 
 1002 FORMAT(A24) 
      IF(FICOUT.NE.' ') THEN 
         OPEN(20,FILE=FICOUT,STATUS='NEW',CARRIAGECONTROL='LIST',ERR=2) 
      ENDIF 
   10 IF(FICIN.EQ.' ') THEN 
         WRITE(3,3011) 
 3011    FORMAT(' NDIM, KDEG, ITYPE, ALPHA, ND0, NP0 >',$) 
         READ(1,*,END=99) NDIM,KDEG,ITYPE,ALPHA,ND0,NP0 
      ELSE 
         READ(10,*,END=99) NDIM,KDEG,ITYPE,ALPHA,ND0,NP0 
      ENDIF 
      NDX0=ND0 
      NDY0=1 
      IF(NDIM.GT.1) NDY0=ND0 
      NPX0=NP0 
      NPY0=1 
      IF(NDIM.GT.1) NPY0=NP0 
      KHXMA=NDX0-1 
      KHYMA=NDY0-1 
      ADCOVG=1 
      ADCOVQ=ADCOVG+NDX0*NDY0 
      LASTAD=ADCOVQ+(2*NDX0-1)*(2*NDY0-1)-1 
      IF(LASTAD.GT.NDIMU) GO TO 90 
      CALL MARKO(U(ADCOVG),U(ADCOVQ),NDIM,KDEG,ITYPE,ALPHA,NDX0,NDY0, 
     & NPX0,NPY0,KHXMA,KHYMA,FICOUT) 
      GO TO 10 
C 
   90 WRITE(3,3090) 
 3090 FORMAT('1*** U est trop petit.') 
C 
   99 STOP 
      END 
      SUBROUTINE MARKO(COVG,COVQ,NDIM,KDEG,ITYPE,ALPHA,NDX0,NDY0, 
     & NPX0,NPY0,KHXMA,KHYMA,FICOUT) 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION COVG(0:KHXMA,0:KHYMA),COVQ(-KHXMA:KHXMA,-KHYMA:KHYMA) 
      DIMENSION SCHEMA(5) 
      CHARACTER*24 FICOUT 
      INTEGER DELX,DELY 
      LOGICAL SKIP 
C 
      DATA SCHEMA/8Hspheriq.,8Hexpon.  ,8Hcubique ,8Hgaussien, 
     &            8Hh**Alpha/ 
C 
C 
      KLOI=0 
      IF(KDEG.EQ.0) THEN 
         MK=2 
      ELSEIF(KDEG.EQ.1) THEN 
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         MK=6 
      ELSEIF(KDEG.EQ.2) THEN 
         MK=20 
      ELSEIF(KDEG.EQ.3) THEN 
         MK=70 
      ENDIF 
C 
      IF(FICOUT.EQ.' ') THEN 
         WRITE(3,3101) NDIM,KDEG,SCHEMA(ITYPE),ALPHA,NDX0,NPX0 
 3101    FORMAT(1H1,I1,'-D',5X,'k =',I2,5X,'Schema ',A8,5X, 
     &          'Alpha =',F5.1,7X,'ND0 =',I4,5X,'NP0 =',I4) 
         WRITE(3,3102)  
 3102    FORMAT(1H0/1H ,29X,'Fluctuations',20X,'Estimation'/ 
     &          17H0  h       Gamma , 
     &          2(32H       Var     Var rel   Sig rel)/1H ) 
      ELSE 
         WRITE(20,3103) NDIM,KDEG,SCHEMA(ITYPE),ALPHA,NDX0,NPX0 
 3103    FORMAT(/1H ,I1,'-D',5X,'k =',I2,5X,'Schema ',A8,5X, 
     &          'Alpha =',F5.1,7X,'ND0 =',I4,5X,'NP0 =',I4) 
         WRITE(20,3104)  
 3104    FORMAT(/1H ,'  H    Fluctu   Estim') 
         WRITE(3,3105) NDIM,KDEG,SCHEMA(ITYPE),ALPHA,NDX0,NPX0 
 3105    FORMAT(1H ,I1,'-D',5X,'k =',I2,5X,'Schema ',A8,5X, 
     &          'Alpha =',F5.1,7X,'ND0 =',I4,5X,'NP0 =',I4) 
      ENDIF 
C 
C 
C     Calcul des valeurs utiles de la covariance de la gaussienne 
C 
C 
      DO 1 KHY=0,NDY0-1 
      DO 1 KHX=0,NDX0-1 
         H=DSQRT(DFLOAT(KHX**2+KHY**2))/(NDX0-1) 
         COVG(KHX,KHY)=COVGEN(H,ITYPE,ALPHA) 
    1 CONTINUE 
C 
C 
C     Boucle sur la distance de calcul du variogramme (direction X) 
C 
C 
      KHMAX=(NDX0-1)/(KDEG+1) 
      HMAX=1./DFLOAT(KDEG+1) 
      IXPAS=1 
      IF(NPX0.GT.1) IXPAS=(NDX0-1)/(NPX0-1) 
      IYPAS=1 
      IF(NPY0.GT.1) IYPAS=(NDY0-1)/(NPY0-1) 
      SKIP=.FALSE. 
C 
      DO 90 KH=IXPAS,KHMAX,IXPAS 
C 
         H=DFLOAT(KH)/DFLOAT(NDX0-1) 
C 
C     Elimination des distances "tordues" lorsque NDX0 est grand 
C 
         IF(FICOUT.NE.' ') GO TO 10 
         IF(NDIM.EQ.2) GO TO 10 
         IF(KDEG.GE.2) GO TO 10 
         IF(H.LE.0.1.OR.H.GE.HMAX-0.1) GO TO 10 
         PAS=0.1/DFLOAT(KDEG+1) 
         D=DMOD(H,PAS) 
         IF(D.LT.0.001.OR.D.GT.PAS-0.001) GO TO 10 
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         IF(.NOT.SKIP) WRITE(3,3010) 
 3010    FORMAT(1H ) 
         SKIP=.TRUE. 
         GO TO 90 
C 
   10    SKIP=.FALSE. 
         NDX=NDX0-(KDEG+1)*KH 
         NDY=NDY0 
         NPX=NPX0-(KDEG+1)*KH/IXPAS 
         NPY=NPY0 
C    
C     Calcul des valeurs utiles de la covariance quadratique 
C     (pour la valeur h) 
C 
         DO 15 DELY=-NDY+1,NDY-1 
         DO 15 DELX=-NDX+1,NDX-1 
C 
            IF(KDEG.EQ.0) THEN 
               G = 2.*COVG(IABS(DELX),IABS(DELY))  
     &             -  COVG(IABS(DELX+KH),IABS(DELY))      
     &             -  COVG(IABS(DELX-KH),IABS(DELY)) 
C 
            ELSEIF(KDEG.EQ.1) THEN 
               G =  6.*COVG(IABS(DELX),IABS(DELY)) 
     &            - 4.*COVG(IABS(DELX+KH),IABS(DELY)) 
     &            - 4.*COVG(IABS(DELX-KH),IABS(DELY)) 
     &            +    COVG(IABS(DELX+2*KH),IABS(DELY)) 
     &            +    COVG(IABS(DELX-2*KH),IABS(DELY)) 
C 
            ELSEIF(KDEG.EQ.2) THEN 
               G = 20.*COVG(IABS(DELX),IABS(DELY)) 
     &            -15.*COVG(IABS(DELX+KH),IABS(DELY)) 
     &            -15.*COVG(IABS(DELX-KH),IABS(DELY)) 
     &            + 6.*COVG(IABS(DELX+2*KH),IABS(DELY)) 
     &            + 6.*COVG(IABS(DELX-2*KH),IABS(DELY)) 
     &            -    COVG(IABS(DELX+3*KH),IABS(DELY)) 
     &            -    COVG(IABS(DELX-3*KH),IABS(DELY)) 
C 
            ELSEIF(KDEG.EQ.3) THEN 
               G = 70.*COVG(IABS(DELX),IABS(DELY)) 
     &            -56.*COVG(IABS(DELX+KH),IABS(DELY)) 
     &            -56.*COVG(IABS(DELX-KH),IABS(DELY)) 
     &            +28.*COVG(IABS(DELX+2*KH),IABS(DELY)) 
     &            +28.*COVG(IABS(DELX-2*KH),IABS(DELY)) 
     &            - 8.*COVG(IABS(DELX+3*KH),IABS(DELY)) 
     &            - 8.*COVG(IABS(DELX-3*KH),IABS(DELY)) 
     &            +    COVG(IABS(DELX+4*KH),IABS(DELY)) 
     &            +    COVG(IABS(DELX-4*KH),IABS(DELY)) 
C 
            ENDIF 
C 
            COVQ(DELX,DELY)=2.*G**2/MK**2 
C 
   15    CONTINUE 
C 
C     Double somme des G(ID-JD;KH), ID,JD decrivant le domaine Vh 
C 
         GDD=0. 
C     La boucle 22 est la traduction optimisee du calcul suivant : 
C        DO 22 IDY=1,NDY 
C        DO 22 IDX=1,NDX 
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C        DO 22 JDY=1,NDY 
C        DO 22 JDX=1,NDX 
C           GDD=GDD+COVQ(JDX-IDX,JDY-IDY) 
C  22    CONTINUE 
         DO 22 DELY=-NDY+1,NDY-1 
            NY=NDY-IABS(DELY) 
            GGG=0. 
            DO 21 DELX=-NDX+1,NDX-1 
               NX=NDX-IABS(DELX) 
               GGG=GGG+NX*COVQ(DELX,DELY) 
   21       CONTINUE 
         GDD=GDD+NY*GGG 
   22    CONTINUE 
         GDD=GDD/((NDX*NDY)**2) 
C 
C     Double somme des G(IP-JP;KH), IP,JP decrivant les points exp. 
C 
         GPP=GDD 
         IF(NPX0.EQ.NDX0.AND.NPY0.EQ.NDY0) GO TO 40 
         GPP=0. 
C     La boucle 32 est la traduction optimisee du calcul suivant : 
C        DO 32 IPY=1,NDY,IYPAS 
C        DO 32 IPX=1,NDX,IXPAS 
C        DO 32 JPY=1,NDY,IYPAS 
C        DO 32 JPX=1,NDX,IXPAS 
C           GDD=GDD+COVQ(JPX-IPX,JPY-IPY) 
C  32    CONTINUE 
         DO 32 DELY=-NDY+1,NDY-1,IYPAS 
            NY=1+(NDY-1)/IYPAS-IABS(DELY)/IYPAS 
            GGG=0. 
            DO 31 DELX=-NDX+1,NDX-1,IXPAS 
               NX=1+(NDX-1)/IXPAS-IABS(DELX)/IXPAS 
               GGG=GGG+NX*COVQ(DELX,DELY) 
   31       CONTINUE 
            GPP=GPP+NY*GGG 
   32    CONTINUE 
         GPP=GPP/((NPX*NPY)**2) 
C 
C     Double somme des G(ID-IP;KH) 
C 
   40    GDP=GDD 
         IF(NPX0.EQ.NDX0.AND.NPY0.EQ.NDY0) GO TO 50 
         GDP=0. 
C     La boucle 42 est la traduction optimisee du calcul suivant : 
C        DO 42 IDY=1,NDY 
C        DO 42 IDX=1,NDX 
C        DO 42 IPY=1,NDY,IYPAS 
C        DO 42 IPX=1,NDX,IXPAS 
C           GDP=GDP+COVQ(IDX-IPX,IDY-IPY) 
C  42    CONTINUE 
         DO 42 DELY=-NDY+1,NDY-1 
            NY=1+(NDY-1-IABS(DELY))/IYPAS 
            GGG=0. 
            DO 41 DELX=-NDX+1,NDX-1 
               NX=1+(NDX-1-IABS(DELX))/IXPAS 
               GGG=GGG+NX*COVQ(DELX,DELY) 
   41       CONTINUE 
            GDP=GDP+NY*GGG 
   42    CONTINUE 
         GDP=GDP/(NDX*NDY*NPX*NPY) 
C 
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C     Calcul du variogramme et des covariances 
C 
   50    IF(KDEG.EQ.0) THEN 
            GAM=COVG(0,0)-    COVG(  KH,0) 
         ELSEIF(KDEG.EQ.1) THEN 
            GAM=COVG(0,0)-4. *COVG(  KH,0)/3. +    COVG(2*KH,0)/3. 
         ELSEIF(KDEG.EQ.2) THEN 
            GAM=COVG(0,0)-1.5*COVG(  KH,0)    +0.6*COVG(2*KH,0) 
     &                   -0.1*COVG(3*KH,0) 
         ELSEIF(KDEG.EQ.3) THEN 
            GAM=COVG(0,0)-1.6*COVG(  KH,0)    +0.8*COVG(2*KH,0) 
     &                   -8. *COVG(3*KH,0)/35.+    COVG(4*KH,0)/35. 
         ENDIF 
         GAM2=GAM**2 
         VARFLU=GDD 
         SIGFLU=DSQRT(VARFLU) 
         VAREST=GDD+GPP-2.*GDP 
         IF(VAREST.LT.0.) VAREST=0. 
         SIGEST=DSQRT(VAREST) 
         IF(FICOUT.EQ.' ') THEN 
            WRITE(3,3061) H,GAM,VARFLU,VARFLU/GAM2,SIGFLU/GAM,  
     &                    VAREST,VAREST/GAM2,SIGEST/GAM 
 3061       FORMAT(1H ,F5.3,F10.3,1X,2(1X,3F10.3,1X)) 
         ELSE 
            WRITE(20,3062) H,SIGFLU/GAM,SIGEST/GAM 
 3062       FORMAT(1H ,F5.3,2F8.4) 
         ENDIF 
C 
   90 CONTINUE 
C 
C 
      RETURN 
      END 
      DOUBLE PRECISION FUNCTION COVGEN(H,ITYPE,ALPHA) 
C 
C 
C     Covariance generalisee nulle en 0 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C 
C 
      GO TO (10,20,30,40,50),ITYPE 
C 
C     Modele spherique 
C 
   10 IF(H.LT.ALPHA) THEN 
         R=H/ALPHA 
         GAMMA=1.5*R-0.5*R**3 
      ELSE 
         GAMMA=1. 
      ENDIF 
      GO TO 90 
C 
C     Modele exponentiel 
C 
   20 R=H/ALPHA 
      GAMMA=1.-DEXP(-R) 
      GO TO 90 
C 
C     Modele cubique 
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C 
   30 IF(H.LT.ALPHA) THEN 
         R=H/ALPHA 
         R2=R**2 
         GAMMA=R2*(7.-R*(8.75+R2*(-3.5+0.75*R2))) 
      ELSE 
         GAMMA=1. 
      ENDIF 
      GO TO 90 
C 
C     Modele gaussien 
C 
   40 R=H/ALPHA 
      GAMMA=1.-DEXP(-0.5*R**2) 
      GO TO 90 
C 
C     Modele en h**Alpha, ou en h**Alpha*Log(h) si Alpha est pair 
C 
   50 IF(H.EQ.0.) THEN 
         GAMMA=0. 
      ELSE 
         N=(ALPHA+0.0001)/2. 
         IF(MOD(N,2).EQ.0) THEN 
            SIGNE=+1. 
         ELSE 
            SIGNE=-1. 
         ENDIF 
         IF(DABS(ALPHA-2.*N).LT.0.0001) THEN 
            GAMMA=SIGNE*H**(2*N)*DLOG(H) 
         ELSE 
            GAMMA=SIGNE*H**ALPHA 
         ENDIF 
      ENDIF 
      GO TO 90 
C 
   90 COVGEN=-GAMMA 
C 
      RETURN 
      END 
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APPENDIX E 

Program MARCO 

Computation of the Fluctuation Variance and of the Estimation Variance  
of the Variogram in the Gaussian and Non-Gaussian Cases 

C     PROGRAMME MARCO 
C 
C 
C     OBJET 
C        CALCUL DE LA VARIANCE DE FLUCTUATION ET DE LA VARIANCE 
C        D'ESTIMATION DU VARIOGRAMME REGIONAL D'UN RECTANGLE 
C        SOUS LES CONDITIONS SUIVANTES : 
C           - DISCRETISATION DU RECTANGLE PAR NDX0 * NDY0 POINTS; 
C           - RECONNAISSANCE PAR NPX0 * NPY0 POINTS A MAILLE REGULIERE 
C             (DISPOSITIF FERME); 
C           - LOI GAUSSIENNE, GAMMA, BESSEL, OU LOGNORMALE (IL S'AGIT 
C             DE CAS PARTICULIERS, OBTENUS A PARTIR DE VARIABLES 
C             GAUSSIENNES); 
C           - SAUF DANS LE CAS D'UNE LOI GAUSSIENNE, VARIOGRAMME LIMITE 
C             AU MODELE EXPONENTIEL (IMPOSE ITYPE=2, OU ITYPE=8 POUR 
C             L'APPROXIMATION LOGNORMALE). 
C 
C        NDX0, NDY0, NPX0 ET NPY0 DOIVENT ETRE DE LA FORME : 
C           - NDX0 = 1 + LX*NX       NDY0 = 1 + LY*NY 
C           - NPX0 = 1 +    NX       NPY0 = 1 +    NY 
C 
C        L'ACQUISITION DES PARAMETRES LIMITE LE CALCUL A 2 CAS : 
C           - SEGMENT 1-D :   NDX0=ND0   NDY0=1     NPX0=NP0   NPY0=1 
C           - CARRE   2-D :   NDX0 = NDY0 = ND0     NPX0 = NPY0 = NP0 
C 
C        PARAMETRES 
C           - NDIM  : DIMENSION DE L'ESPACE (1 OU 2) 
C           - KLOI  : TYPE DE LOI (1 A 4) 
C           - ITYPE : TYPE DE COVARIANCE OU DE VARIOGRAMME (1 A 7) 
C           - ALPHA : PORTEE, OU PARAMETRE ALPHA DU MODELE H**ALPHA 
C           - ND0   : DISCRETISATION DU SEGMENT OU DU CARRE 
C           - NP0   : RESEAU DES POINTS EXPERIMENTAUX 
C 
C        NOTATIONS 
C           COVG : COVARIANCE GENERALISEE D'ORDRE 0 K(H) 
C                  (=COVARIANCE ORDINAIRE OU -VARIOGRAMME) 
C           COVQ : COVARIANCE QUADRATIQUE G(X-Y;H) 
C                  (=COVARIANCE DE LA F.A. Q(X) = (Z(X+H)-Z(X))**2 ) 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION U(72722) 
      INTEGER ADCOVG,ADCOVQ 
C 
C     LA DIMENSION DE U PERMET A 2-D D'ALLER JUSQU'A ND0=121 
      DATA NDIMU/72722/ 
C 
C 
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    1 READ(1,*,END=99) NDIM,KLOI,ITYPE,ALPHA,ND0,NP0 
      IF(KLOI.EQ.0.AND.ITYPE.LE.5) GO TO 2 
      IF(KLOI.EQ.0.AND.ITYPE.EQ.6.AND.NDIM.EQ.1) GO TO 2 
      IF(KLOI.EQ.1.AND.ITYPE.EQ.2) GO TO 2 
      IF(KLOI.EQ.2.AND.ITYPE.EQ.2) GO TO 2 
      IF(KLOI.EQ.3.AND.ITYPE.EQ.2.AND.NDIM.EQ.1.AND.ALPHA.GE.1.) GO TO 2 
      IF(KLOI.EQ.3.AND.ITYPE.EQ.8) GO TO 2 
      GO TO 1 
C 
    2 NDX0=ND0 
      NDY0=1 
      IF(NDIM.GT.1) NDY0=ND0 
      NPX0=NP0 
      NPY0=1 
      IF(NDIM.GT.1) NPY0=NP0 
      KHXMA=NDX0-1 
      KHYMA=NDY0-1 
      ADCOVG=1 
      ADCOVQ=ADCOVG+NDX0*NDY0 
      LASTAD=ADCOVQ+(2*NDX0-1)*(2*NDY0-1)-1 
      IF(LASTAD.GT.NDIMU) GO TO 90 
      CALL MARCO(U(ADCOVG),U(ADCOVQ),NDIM,KLOI,ITYPE,ALPHA,NDX0,NDY0, 
     & NPX0,NPY0,KHXMA,KHYMA) 
      GO TO 1 
C 
   90 WRITE(3,300) 
  300 FORMAT('1*** U TROP PETIT') 
C 
   99 STOP 
      END 
      SUBROUTINE MARCO(COVG,COVQ,NDIM,KLOI,ITYPE,ALPHA,NDX0,NDY0, 
     & NPX0,NPY0,KHXMA,KHYMA) 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION COVG(0:KHXMA,0:KHYMA),COVQ(-KHXMA:KHXMA,-KHYMA:KHYMA) 
      DIMENSION ALOI(0:3),SCHEMA(8) 
      INTEGER DELX,DELY 
      LOGICAL SKIP 
C 
      DATA ALOI  /8HGAUSS   ,8HGAMMA   ,8HBESSEL  ,8HLOGN.   / 
      DATA SCHEMA/8HSPHERIQ.,8HEXPON.  ,8HCUBIQUE ,8HGAUSSIEN, 
     &            8HH**ALPHA,8HTRIANGLE,8HMIXTE   ,8HLOG.MIX./ 
C 
C 
      KDEG=0 
      MK=2 
C 
      WRITE(3,300) NDIM,ALOI(KLOI),SCHEMA(ITYPE),ALPHA,NDX0,NPX0 
  300 FORMAT(/1H ,I1,'-D',5X,'LOI ',A6,5X,'SCHEMA ',A8,5X,'A =',F6.2, 
     & 5X,'ND0 =',I4,5X,'NP0 =',I4) 
       WRITE(3,301)  
  301 FORMAT(/1H ,'  H    Fluctu   Estim') 
C 
C 
C     PARAMETRES DU VARIOGRAMME DE LA VARIABLE GAUSSIENNE AUXILIAIRE 
C     (CF. COMMENTAIRES DE LA BOUCLE 15) 
C 
C 
      IF(KLOI.EQ.0) THEN 
         ITYPE1=ITYPE 
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         ALPHA1=ALPHA 
      ELSEIF(KLOI.EQ.1) THEN 
         ITYPE1=2 
         ALPHA1=2.*ALPHA 
      ELSEIF(KLOI.EQ.2) THEN 
         ITYPE1=2 
         ALPHA1=2.*ALPHA 
      ELSEIF(KLOI.EQ.3) THEN 
         IF(ITYPE.EQ.2) ITYPE1=6 
         IF(ITYPE.EQ.8) ITYPE1=7 
         ALPHA1=ALPHA 
      ENDIF 
C 
C 
C     CALCUL DES VALEURS UTILES DE LA COVARIANCE DE LA GAUSSIENNE 
C 
C 
      DO 1 KHY=0,NDY0-1 
      DO 1 KHX=0,NDX0-1 
         H=DSQRT(DFLOAT(KHX**2+KHY**2))/(NDX0-1) 
         COVG(KHX,KHY)=COVGEN(H,ITYPE1,ALPHA1) 
    1 CONTINUE 
C 
C 
C     BOUCLE SUR LA DISTANCE DE CALCUL DU VARIOGRAMME (DIRECTION X) 
C 
C 
      KHMAX=NDX0-1 
      HMAX=1. 
      IXPAS=1 
      IF(NPX0.GT.1) IXPAS=(NDX0-1)/(NPX0-1) 
      IYPAS=1 
      IF(NPY0.GT.1) IYPAS=(NDY0-1)/(NPY0-1) 
      SKIP=.FALSE. 
C 
      DO 90 KH=IXPAS,KHMAX,IXPAS 
C 
         H=DFLOAT(KH)/DFLOAT(NDX0-1) 
C 
C     ELIMINATION DES DISTANCES "TORDUES" LORSQUE NDX0 EST GRAND 
C 
         IF(NDIM.EQ.1) GO TO 10 
         IF(NDIM.EQ.2) GO TO 10 
         IF(H.LE.0.1.OR.H.GE.HMAX-0.1) GO TO 10 
         PAS=0.1 
         D=DMOD(H,PAS) 
         IF(D.LT.0.001.OR.D.GT.PAS-0.001) GO TO 10 
         IF(.NOT.SKIP) WRITE(3,310) 
  310    FORMAT(1H ) 
         SKIP=.TRUE. 
         GO TO 90 
C 
   10    SKIP=.FALSE. 
         NDX=NDX0-KH 
         NDY=NDY0 
         NPX=NPX0-KH/IXPAS 
         NPY=NPY0 
C 
C     CALCUL DES VALEURS UTILES DE LA COVARIANCE QUADRATIQUE 
C     DE LA VARIABLE NON GAUSSIENNE (POUR LA VALEUR H) 
C    
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         DO 15 DELY=-NDY+1,NDY-1 
         DO 15 DELX=-NDX+1,NDX-1 
C 
            COVH  =COVG(KH,0) 
            COVU  =COVG(IABS(DELX),IABS(DELY))  
            COVUMH=COVG(IABS(DELX-KH),IABS(DELY)) 
            COVUPH=COVG(IABS(DELX+KH),IABS(DELY)) 
C 
C     LOI DE GAUSS   Z=U   U N(0,1) 
C 
            IF(KLOI.EQ.0) THEN 
               GGG=0.5*(2*COVU-COVUMH-COVUPH)**2 
C 
C     LOI GAMMA   Z=U**2/SQRT(2.)   U N(0,1) 
C      ==> GAMMA(H)=1-RHO(H)**2 
C 
            ELSEIF(KLOI.EQ.1) THEN 
               GGG=  8*(2*COVU**2+COVUMH**2+COVUPH**2) 
     &             + 6*(COVUMH**4+COVUPH**4) 
     &             +16*(COVU**2+COVH**2)*(COVU**2+COVUMH*COVUPH) 
     &             + 4*(COVUMH**2)*(COVUPH**2) 
     &             -24*(COVU**2)*(COVUMH**2+COVUPH**2) 
     &             -32*COVU*COVH*(COVUMH+COVUPH) 
               GGG=GGG/4. 
C 
C     LOI DE BESSEL   Z=U1*U2   U1,U2 N(0,1) 
C      ==>     GAMMA(H)=1-RHO(H)**2 
C 
            ELSEIF(KLOI.EQ.2) THEN 
               GGG= 2*COVU**2+COVUMH**2+COVUPH**2 
     &             +3*COVU**4+COVUMH**4+COVUPH**4 
     &             -4*COVU**2*(COVUMH**2+COVUPH**2) 
     &             +2*(COVU**2)*(COVH**2)+(COVUMH**2)*(COVUPH**2) 
     &             +2*(COVU**2+COVH**2)*COVUMH*COVUPH 
     &             -4*COVU*COVH*(COVUMH+COVUPH) 
C 
C     LOI LOGNORMALE   Z=EXP(U)/SQRT(E*(E-1))   U N(0,1) 
C      ==>      GAMMA(H)=1-(EXP(RHO(H))-1)/(E-1) 
C               EN PARTICULIER, SI U AVEC MODELE MIXTE DE PORTEE ALPHA, 
C               GAMMA(H)=1-EXP(-H/ALPHA) 
C     EXCEPTION : SCHEMA EXPONENTIEL A 1-D ET ALPHA>1 : 
C                      Z=EXP(U)/E   U N(0,1) AVEC COVARIANCE TRIANGLE 
C                                            DE PORTEE ALPHA 
C      ==>      GAMMA(H)=1-EXP(-H/ALPHA)   SUR [0,1] 
C 
            ELSEIF(KLOI.EQ.3) THEN 
               GGG= 0.50*DEXP(2+4*COVU) 
     &             +0.25*DEXP(2+4*COVUMH)+0.25*DEXP(2+4*COVUPH) 
     &             -     DEXP(1+COVH+2*COVU+2*COVUMH) 
     &             -     DEXP(1+COVH+2*COVU+2*COVUPH) 
     &             +     DEXP(2*COVH+2*COVU+COVUMH+COVUPH) 
     &             -(DEXP(1.D0)-DEXP(COVH))**2 
               GGG=DEXP(2.D0)*GGG 
               IF(ITYPE.EQ.2) GGG=GGG/DEXP(4.D0) 
               IF(ITYPE.EQ.8) GGG=GGG/(DEXP(1.D0)*(DEXP(1.D0)-1.))**2 
C 
            ENDIF 
C 
            COVQ(DELX,DELY)=GGG 
C 
   15    CONTINUE 
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C 
C     DOUBLE SOMME DES G(ID-JD;KH), ID,JD DECRIVANT LE DOMAINE VH 
C 
         GDD=0. 
         DO 22 DELY=-NDY+1,NDY-1 
            NY=NDY-IABS(DELY) 
            GGG=0. 
            DO 21 DELX=-NDX+1,NDX-1 
               NX=NDX-IABS(DELX) 
               GGG=GGG+NX*COVQ(DELX,DELY) 
   21       CONTINUE 
            GDD=GDD+NY*GGG 
   22    CONTINUE 
         GDD=GDD/((NDX*NDY)**2) 
C 
C     DOUBLE SOMME DES G(IP-JP;KH), IP,JP DECRIVANT LES POINTS EXP. 
C 
         GPP=GDD 
         IF(NPX0.EQ.NDX0.AND.NPY0.EQ.NDY0) GO TO 40 
         GPP=0. 
         DO 32 DELY=-NDY+1,NDY-1,IYPAS 
            NY=1+(NDY-1)/IYPAS-IABS(DELY)/IYPAS 
            GGG=0. 
            DO 31 DELX=-NDX+1,NDX-1,IXPAS 
               NX=1+(NDX-1)/IXPAS-IABS(DELX)/IXPAS 
               GGG=GGG+NX*COVQ(DELX,DELY) 
   31       CONTINUE 
            GPP=GPP+NY*GGG 
   32    CONTINUE 
         GPP=GPP/((NPX*NPY)**2) 
C 
C     DOUBLE SOMME DES G(ID-IP;KH) 
C 
   40    GDP=GDD 
         IF(NPX0.EQ.NDX0.AND.NPY0.EQ.NDY0) GO TO 50 
         GDP=0. 
         DO 42 DELY=-NDY+1,NDY-1 
            NY=1+(NDY-1-IABS(DELY))/IYPAS 
            GGG=0. 
            DO 41 DELX=-NDX+1,NDX-1 
               NX=1+(NDX-1-IABS(DELX))/IXPAS 
               GGG=GGG+NX*COVQ(DELX,DELY) 
   41       CONTINUE 
            GDP=GDP+NY*GGG 
   42    CONTINUE 
         GDP=GDP/(NDX*NDY*NPX*NPY) 
C 
C     CALCUL DU VARIOGRAMME ET DES VARIANCES DE LA VARIABLE 
C     NON GAUSSIENNE 
C 
   50    GAM=COVGEN(0.D0,ITYPE,ALPHA)-COVGEN(H,ITYPE,ALPHA) 
         GAM2=GAM**2 
         VARFLU=GDD 
         SIGFLU=DSQRT(VARFLU) 
         VAREST=GDD+GPP-2.*GDP 
         IF(VAREST.LT.0.) VAREST=0. 
         SIGEST=DSQRT(VAREST) 
         WRITE(3,360) H,SIGFLU/GAM,SIGEST/GAM 
  360    FORMAT(1H ,F5.3,2F8.4) 
C 
   90 CONTINUE 
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C 
C 
      RETURN 
      END 
      DOUBLE PRECISION FUNCTION COVGEN(H,ITYPE,ALPHA) 
C 
C 
C     COVARIANCE OU -VARIOGRAMME 
C 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C 
C 
      GO TO (10,20,30,40,50,60,70,70),ITYPE 
C 
C     MODELE SPHERIQUE 
C 
   10 IF(H.LT.ALPHA) THEN 
         R=H/ALPHA 
         COV=1.-1.5*R+0.5*R**3 
      ELSE 
         COV=0. 
      ENDIF 
      GO TO 90 
C 
C     MODELE EXPONENTIEL 
C 
   20 R=H/ALPHA 
      COV=DEXP(-R) 
      GO TO 90 
C 
C     MODELE CUBIQUE 
C 
   30 IF(H.LT.ALPHA) THEN 
         R=H/ALPHA 
         R2=R**2 
         COV=1.-R2*(7.-R*(8.75+R2*(-3.5+0.75*R2))) 
      ELSE 
         COV=0. 
      ENDIF 
      GO TO 90 
C 
C     MODELE GAUSSIEN 
C 
   40 R=H/ALPHA 
      COV=DEXP(-0.5*R**2) 
      GO TO 90 
C 
C     MODELE EN H**ALPHA 
C 
   50 IF(H.EQ.0.) THEN 
         COV=0. 
      ELSE 
         COV=-H**ALPHA 
      ENDIF 
      GO TO 90 
C 
C     MODELE TRIANGLE 
C 
   60 IF(H.LT.ALPHA) THEN 
         R=H/ALPHA 
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         COV=1.-R 
      ELSE 
         COV=0. 
      ENDIF 
      GO TO 90 
C 
C     MODELE MIXTE 
C     (MODELE CONCU DE MANIERE QUE SI U(X) EST GAUSSIENNE ET ADMET CE 
C      MODELE DE VARIOGRAMME, ALORS EXP(U(X)) EST LOGNORMALE ET A UN 
C      VARIOGRAMME TRES PROCHE DU MODELE EXPONENTIEL. LE SCHEMA MIXTE DE 
C      PORTEE ALPHA COMPORTE : 
C       - 50% DE SCHEMA EXPONENTIEL DE PORTEE 1.6*ALPHA; 
C       - 50% DE SCHEMA  SPHERIQUE  DE PORTEE 2.7*ALPHA.) 
C 
   70 AEXP=1.6*ALPHA 
      R=H/AEXP 
      CEXP=DEXP(-R) 
      ASPH=2.7*ALPHA 
      IF(H.LT.ASPH) THEN 
         R=H/ASPH 
         CSPH=1.-1.5*R+0.5*R**3 
      ELSE 
         CSPH=0. 
      ENDIF 
      COV=0.5*(CEXP+CSPH) 
      IF(ITYPE.EQ.8) GO TO 80 
      GO TO 90 
C 
C     MODELE LOGNORMAL ASSOCIE AU MODELE MIXTE 
C 
   80 COV=(DEXP(COV)-1.)/(DEXP(1.D0)-1.) 
      GO TO 90 
C 
C 
   90 COVGEN=COV 
C 
      RETURN 
      END 
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