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Introduction
• Histogram modeling (equivalently c.d.f. F(z) modeling) is 

required in non linear geostatistical techniques.

• It is equivalent to modeling the (non decreasing) gaussian 
anamorphosis function z = Φ(y). 

• The difficulty is that the data gives a partial description of the 
whole distribution. In particular the tail is not well represented 
while the impact on the recoverable resources estimates or 
confidence intervals is crucial.

• A second issue is related to normal score transform of data in 
case of zero-effect, which is necessary when using conditional 
simulations in the multi-gaussian case.
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Histogram Modeling Methodology
• Gaussian anamorphosis can be developed into Hermite

polynomials Hn. Historically this was required to perform bi-
gaussian Disjunctive Kriging of recoverable resources at mining 
cutoffs.

• Because of truncation at a given order, the polynomial 
development is not everywhere a non-decreasing function, 
particularly at large values (oscillations).

• It seems appropriate to model the distribution first, then to 
develop it into Hermite polynomials only if required by the 
application.
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Histogram Modeling Methodology
• The empirical distribution of data from a continuous variable is

discrete and finite, even with a large number of data.

• We aim at getting a model which is a continuous distribution with 
possibly additional atoms (equal values for many data, e.g. 0-
effect).
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Histogram Modeling Methodology
• We propose to represent the histogram by intervals (yi, yi+1) or 

(F(zi), F(zi+1)). 
• This includes

• theoretical as well as empirical or discretized distributions
• possibly the case of only 1 piece, eg lognormal.

• Then 
– for discrete distribution or atoms, Φ(y) is constant on piece(s)
– else, behaviour of Φ(y) within each (yi, yi+1) piece, or of F(z) 

within each (zi, zi+1) interval, to be given.
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Histogram Modeling Methodology
From empirical to continuous distribution
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Histogram Modeling Methodology

• Essential aim, here: to go from a staircase empirical distribution to a 
continuous distribution.
• The method is:

– to represent each stair by one point (eg median or mean over each 
stair, related respectively to « frequency » or « empirical » inversion)
– to interpolate between these points (linear, power…)

• linear interpolation of T(z) is different from linear interpolation of 
Φ(y)
• interpolation can possibly be used to rediscretize finely the 
distribution
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Histogram Modeling Methodology

Extrapolation of large values:

� We will focus on the possible tail of large values of a positively 

skewed distribution (the reverse to be obtained by symmetry)

� Empirical distribution gives often a poor description of the tail

− « control points » can be added to refine the empirical distribution, without 

changing its staircase aspect

� Major issues:

− Choosing a bound or not? 

− Behaviour towards this bound, or unbounded behaviour?
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Histogram Modeling Methodology
� The previous interpolation and, above all, extrapolation, result in an increase of 

variance from the empirical variance of sample data

� In fact an increase of variance is natural, but could be better controlled

� Typical case: 

systematic grid with random origin

Additivity relationship where V* represents all samples within domain V: 

D2(O|V) = D2(O|V*) + D2(V*|V)

ie var(Z(x)-Z(V)) – var(Z(x)-Z(V)*) = var(Z(V)*-Z(V)) 

increase of variance = global estimation variance !!
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Histogram Modeling Methodology

� An idea is to consider the distribution model as a dispersed version of 
the empirical distribution, with a slightly higher variance equal to 
empirical sample variance + ~ global estimation variance 
(this being expected to lie between nugget/n and sill/n for a 
variogram with sill and a regular sampling).
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Histogram Modeling Methodology

� A way to obtain a distribution model which is a dispersed version of the 
empirical distribution consists in replacing each data value zα by a 
distribution with mean zα and appropriate variance

− Replacing each data value zα by a gaussian (or other) distribution with mean zα and 
constant variance s2 results in an increase in variance equal to s2

− This is appropriate if the distribution is unbounded: e.g. dispersing a zero-value would 
give negative values which may not be acceptable
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Histogram Modeling Methodology

− Otherwise the variance can be modulated. For instance, in the case 
of a positive (non-negative) distribution with positive skewness, each 
data value z

α
could be replaced by a gaussian (or lognormal, etc) 

distribution with mean z
α

and std dev s z
α

so that the increase in 
variance is s2 sum z

α
2 /n (for weights 1/n)

� Thus, in this method, the variance can be directly used as an input control parameter

� A further fine discretization appears as a convenient way to store the modeled distribution
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Case study
Example of data with a skewed distribution
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Case study

Gaussian anamorphosis with dispersion of the data allows
extending beyond the maximum of the data.

The metal quantity versus cutoff is changed accordingly.
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Normal score transform of data with 0-effect

� 0-effect means that a significant proportion of values are equal, say Zα=0. 

� P(Z=0) = P(Y<yc), hence a 0-effect corresponds to a threshold on the gaussian 
variable.

� But the normal score transforms for the 0-effect cannot be obtained easily, as the 
normal score transform for all data should:

� be normally distributed 

� share a consistent structure. 
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Normal score transform of data with 0-effect

� The method consists in generating Gaussian values for 0-effect using a Gibbs 
sampler:

� start from gaussian random values 
equal to the normal score transform of Z>0 data, 
and to gaussian values <yc for the data with Z=0.

� then generate a gaussian value for each data Z=0, conditionally on values at
all other data points.

� repeat the procedure iteratively in order to get the desired gaussian 
distribution and variogram.
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Normal score transform of data with 0-effect

� For applying that method we need the variogram model of the gaussian variable.

� This variogram cannot be inferred directly since the gaussian values for the zero-
effect are ignored.

� But in a gaussian model the covariance of a transform of the gaussian variable Y 
can be expressed from the covariance of the gaussian variable Y.

2
( ){ [ ( )] [ ( )]} ( ) ( ) ( , ) [ { [ ]}]hCov f Y x h f Y x f t f u g t u dt du E f Yρ+ = −∫

with the bi-gaussian standard p.d.f.
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Therefore we can determine indirectly the covariance of Y from this of f(Y), 
taken here as Y truncated at the threshold yc.
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Case study
In then previous example about 40% of the data were equal to the detection
limit.

After pseudo-normal score transform we get a truncated gaussian 
distribution.
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Case study
The variogram model of the underlying gaussian variable can be chosen so
that the variogram of the truncated gaussian variable is fitted.
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Case study
After the Gibbs sampler we can compare the experimental variogram 
calculated on the gaussian variable, with the input variogram model.
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Case study
With a « classical » approach (normal score transform by frequency
inversion) we would get a higher variogram because of the arbitrariness of 
the gaussian values assignment.

Experimental without zero-effect

Experimental with zero-effect
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Conclusions 

� Histogram modeling by dispersion: a flexible way to model the 

empirical histogram of data while controlling variance and tail

� Normal score transform of data with zero-effect: allows 

generating at datapoints values that are normally distributed and 

have a consistent structure. 

It is a preliminary step before gaussian simulation, either 

monovariate or in relation with other transformed gaussian fields 

e.g. representing continuous variables or indicators.


