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Experimental variogram of the residuals in the
universal kriging (UK) model

N. Desassis & D. Renard

1 Model and notations

Suppose that we observe y = (y(x1), . . . , y(xn)) the realization of a random
function Y (.) at points x1, . . . , xn of a domain D ⊂ Rd.

We suppose that for all x ∈ D,

Y (x) =

p∑
i=0

βifi(x) +R(x) (1)

where R is an intrinsic random function (IRF) with variogram γ(R), the fi are
some functions of the coordinates (e.g polynomial drifts or external drifts)
known everywhere (at the data locations and at the prediction sites) and the
βi are some real coefficients. Note that the function f0 is equal to 1 for all
x ∈ D.

The aim of the methodology is to provide some values for the coefficients
βi and a model for the variogram γ(R).

We will note

• β = (β0, β1, . . . , βp)
′ the (p+ 1)-vector of drift coefficients,

• F the n× (p+ 1) matrix with (i, j)th term fj−1(xi) (the first column of
F is the vector 11n, which has its n components equal to 1),

• Y = (Y (x1), . . . , Y (xn)) the random vector of Y (.) at observation sites

• R = (R(x1), . . . , R(xn)) the vector of the intrinsic random function at
observation sites,
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• r = (r(x1), . . . , r(xn)) the current realization of R, that means

r(xj) = y(xj)−
p∑

i=0

βifi(xj).

With these notations, the model (??) can be written

Y = Fβ + R (2)

2 The usual way

2.1 Algorithm

The traditional way to determine β and γ is

1. Compute some estimated coefficients β̂

2. Compute the estimated residuals r̂ = y− Fβ̂

3. Estimate the experimental variogram of the estimated residuals γ̂ for
different lags h

4. Fit a model γ to the experimental variogram γ̂.

The point 1. is easily done. In this work, we will consider the least-square
estimator:

β̂ = (F′F)−1F′y

Then the point 2. becomes

r̂ = y− Fβ̂ = Py

where
P = I−M

with I the identity matrix of size n and

M = F(F′F)−1F′.
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The point 3. is the computation of the variogram of the residuals for
different lags h:

γ̂(r̂)(h) =
1

N(h)

∑
(i,j)∈V(h)

γ̂
(r̂)
ij

where

γ̂
(r̂)
ij =

1

2
(r̂(xi)− r̂(xj))2,

(i, j) ∈ V(h) is the set of pairs (i, j) such as xi− xj ' h and N(h) stands
for the number of such pairs.

2.2 Bias of the methodology

A major limitation of this methodology comes from the fact that the experi-
mental variogram computed from the estimated residuals r̂ is biased. In other
words, if we compute for a given h the expectation of γ̂(R̂)(h) the random
version of γ̂(r̂)(h) and if we compare with the target γ(R)(h) we have:

E[γ̂(R̂)(h)] ≤ γ(R)(h).

To see that, first note that we can write the estimated residuals as follows:

R̂ = PY = P(Fβ + R) = PR (3)

since PF = F−MF = F− F(F′F)−1F′F = 0.

Now, let’s compute E[γ̂
(R̂)
ij ] where γ̂

(R̂)
ij is the random version of γ̂

(r̂)
ij .

E[γ̂
(R̂)
ij ] =

1

2
E[(R̂(xi)− R̂(xj))

2]

=
1

2
Var(R̂(xi)− R̂(xj))

since E[R̂(xi)] = 0.
Now, let’s first remark that

R̂(xi)− R̂(xj) = (Pi. − Pj.)R,

where Pi. and Pj. are respectively the row vectors of the ith and the jth

line of P .
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It follows that R̂(xi)− R̂(xj) can be seen as an authorized linear combi-
nation (ALC) of the elements of R. Indeed, let’s compute S(Pi.), the sum of
the components of Pi..

S(Pi.) = 1− S(Mi.)

= 1−Mi.11n

= 0

since MF = F and the first column of F is equal to 11n.
Therefore, we can compute the variance of the ALC.
First, note that (??) implies:

R̂(xi)− R̂(xj) = R(xi)−Mi.R− (R(xj)−Mj.R)

= R(xi)−R(xj)−
n∑

k=1

MikR(xi) +
n∑

k=1

MjkR(xj)

where Mij stands for the (i, j)th term of the matrix M.
Therefore, we have

E[γ̂
(R̂)
ij ] =

1

2
Var(R(xi)−R(xj)) + bij

where bij, the bias associated to the pair (i, j), can be written:

bij =
n∑

k=1

(Mik −Mjk)(γ(R)(hik)− γ(R)(hjk))

+
n∑

k=1

n∑
l=1

(
MikMjl −

MikMil +MjkMjl

2

)
γ(R)(hkl)

(4)

where hkl stands for the separation vector xk − xl.
The total bias for the lag h is:

B(h) =
1

N(h)

∑
(i,j)∈V(h)

bij. (5)

To compute the total bias associated to the experimental variogram at lag
h, we need to know the value of the variogram at all the distances which is
exactly the quantity we are trying to compute. To circumvent this difficulty,
we use the iterative procedure described in the next section.
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3 Bias correction

To perform the bias correction, we propose the following algorithm (inspired
from the one of Beckers and Bogaert, 1998):

Algorithm to compute γ̂(r)(h)

Initialisation:

At step 0 do:

(a) Compute γ̂(r̂)(h), the experimental variogram of the estimated residuals.

(b) Set γ̂(r)(h) = γ̂(r̂)(h).

Iterations:

At step n do:

(a) Fit a model γ(n) on γ̂(r)(h).

(b) Compute the bias B(n)(h) by using equations (??) and (??) with

γ(R) = γ(n).

(c) Compute the corrected experimental variogram

γ̂(r) = γ̂(r̂) −B(n)(h)

Note that step (a) at step n can be performed with the algorithm of Desassis
and Renard (2012).
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