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Abstract Influenza infects from 5% to 20% of the population during an epidemic
episode, which typically lasts a few weeks, and, as the conditions leading to an
outbreak are not well understood, the moment of its start is difficult to foresee. The
early detection of an epidemic would however make it possible to limit its impact by
adopting appropriate actions—this is particularly desirable in account of the threat
of a major pandemic. As a side-product of the forecasting system an estimation of
the total number of infected people in each region at every time step is provided.

We first present the classical epidemiological model for contagious diseases and
explain the way regionalization has been incorporated into it. Then we describe the
assimilation technique that is used to process the data, which are daily reported
cases of influenza-like illness. Tests on simulated data are presented to illustrate
the efficiency of the process and finally real observational data from the French
Sentinelles network are processed.

Introduction: the Sentinelles Network Data

The UMR-S 707 of the INSERM and the Geostatistics Group of the Centre de
Geosciences have been collaborating since several years on a prototype system for
assimilating data from a sentinel network of voluntary general practitioners into a
stochastic epidemiological model (Biboud, 2002; Bui, 2001) The model includes
temporal evolution of the epidemic state and a basic regionalization. The improve-
ments made with respect to those studies were mainly concerned regionalization
aspects.

The observational data are provided by the French Sentinelles network. This net-
work gathers 1200 physicians (among the 60000 general practitioners of metropoli-
tan France) who connect themselves about once every week to the internet to report
the number of cases of influenza-like-diseases (as well as 8 other diseases) they have
observed among their patients.
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The observed cases may give an idea of the evolution of the epidemic, but they are
subject to many uncertainties. First, the diagnosis leading a physician toreporta caseis
only based on the symptoms of the disease and usually no virologic analysis is carried
out. The physician mainly looks for the characteristic symptoms of influenza: sudden
fever above 39°C, breathing troubles and muscle soreness. Now, these symptoms
could also the consequence of other diseases and it is also possible that some patients
could have different symptoms, or no reaction at all, and still be contagious.

Furthermore, an unknown proportion of the population does not consult a doctor
when they have got influenza. In this study, given the lack of precise data and ac-
cording to estimations made at the INSERM, this proportion is assumed to be 50%.

Finally, doctors do not regularly connect themselves to the network, and some-
times forget to report an absence of cases, and yet this would also be an important
information. This irregularity also may lead to an accumulation of cases on the day
of each connection, whereas the patients that were reported may have consulted
already a few days earlier.

The cases have therefore been redistributed over the period prior to correction to
take this irregularity into account. A Sentinelles’ doctor is considered as active if the
gap between two consecutive connections is inferior or equal to 12 days. For exam-
ple, if a doctor connects on a Friday, and his last connection was on the Monday of
the same week, he will be considered active on every day from Tuesday to Friday,
and if he reports 6 cases, they will be spread out uniformly over these 4 days, that is
1.5 cases per day. This uniform distribution may appear unrealistic since it is more
probable that a case reported one day has consulted the same day or the day before,
rather than several days earlier. However, this reallocation, even though imperfect,
seems acceptable and has been adopted for this study.

In this study, the time scale will be the day, in order to enable an early detection
of the epidemic, and the geographic scale will be the French administrative regions
(all 21 of the metropolitan, continental regions). Figure 1 shows the number of cases
reported in four different regions of France for the last 5 years, as well as the number
of active doctors.

1 The Epidemic Model

The SIR model, widely used to model epidemic diseases (Daley and Gani, 1999;
Andersson and Britton, 2000) partitions the populations into three categories:

® Susceptible: the people free from the disease and without specific immunity,
Infected: the people infected by the virus and who are still infectious,
Removed: the people who have recovered from their illness, are no longer infec-
tious and are immunized.

We will consider a discrete time-space structured model. The population in each
region x at time 7 is partitioned into by S;(x), I,(x) and R,(x). The total population
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Fig. 1 Daily declarations of the Sentinelles network and number of active doctors over the last
5 years, in four French regions

in each region N(x) is assumed constant during the course of an epidemic, so we
have Vi: N(x) = S;(x) + I,(x) + R, (x).

The new cases in a region x result from contacts between susceptibles in given
region x and infectives in the other regions y. If the contact rate per time unit
between x and y is denoted by a(x,y), and if each S—I contact produces a
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contamination with probability 7, each susceptible avoids contamination during a
time interval with probability:

q(x,t) = U (1 . Iii((y)))a(x,y)

y

Therefore, under this simple model which assumes independence of contamination
events, the number of new infectives at x is a binomial variable with parameters
S(x) and 1—q(x, 1).

The observed behavior of real epidemics, in which bursts follow smooth periods,
suggests a sharp increase of the probability of contamination T during epidemic
episodes. This increase could be due to the income of a new virus strain. Thus we
modeled 7 with independent two-state Markov chains for the different regions and
write accordingly 7, (x).

The next step in the modeling is about the recovery from disease. A Markovian
structure, when only one category of infective is considered, would imply an expo-
nential distribution of individual infectious periods. To obtain more realistic distri-
butions, without sacrificing the Markovian property of the model, we further divided
I,(x) into I°(x), ..., I®(x) according to time since infection. Recovery probability
for each category in one time step is p’r‘ec; k=1,---,7, with pzec = 1, since it is
assumed that infection cannot last more than 7 days.

Next we need to model how the declarations inform us on the epidemic state.
We assume that each new infected subject is registered by Sentinelles with a known
probability, which depends on the coverage of the region. Thus the number of dec-
larations in x is conditionally binomial, with parameters S,_1(x) — S;(x), paec(x).

2 Regionalization of the Model

This section describes the calculation of the contact rate a(x, y), which is a main
parameter of the regionalized model.

2.1 The Origin-destination Matrix

A common tool in population flux modeling is the origin-destination matrix. This
matrix is defined by: M = (M,,) with M, , being the number of people moving
from x to y per time unit.

There are several ways to calculate this matrix. To describe precisely the popula-
tion fluxes between regions, the ideal way would be to have access to the road and
rail traffic data. Unfortunately, these data are not easy to find and we will finally use
a mathematical model of the fluxes instead.
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2.2 The Gravitational Model

The gravitational model, inspired by Newton’s laws, assumes that the flux from x
to y is proportional to the populations in x and y and also inversely proportional to
a power of the distance between the regions. We thus write

P}PY
Ty =k ! B ’
dyy

with:

T, the number of people moving from x to y,

P, the population at x,

dy, the distance between x and y (based on their main cities),

k a proportionality constant depending on the time step,

A the force of emission of the source,

a the force of attraction of the destination, mainly on the basis of its economic
activities,

B the transport friction, depending on the efficiency of the transport system.

The last three parameters should be adjusted with observed data, which however
lacked in this study, and so A and o were set to 1, whereas § was set to 2.

2.3 Contact Probabilities

The origin-destination matrix can be set up in different ways. One of them assumes
that the people effectively move, leading to a revision of the total population within
each region at each step. This approach may be acceptable in the case of important
population fluxes, for example on holidays, but it is far too rough to describe daily
contacts between regions, which are mainly caused by commuting.

We choose a different approach and define the contact matrix. We assume that
people from two regions are in contact and therefore can infect each other, but at the
end of each time step, everyone is back home. The population within each region
therefore remains constant. We further assume that the disease does not affect the
population movements.

The contact matrix is generated according to the following choices:

The total number of contacts for a single person (we set it to 100 in this study).
e We then determine the number of contacts each person has with people in the
same region. In the present setting, the model assumes that the more a region
is populated, the more it is attractive, and the lower is the within-region contact
rate. This led to the formula: N,, = K/Pop(x) with K = 0.000003.
® The contacts with people in other regions are split on the basis of the origin-
destination matrix obtained from the gravity model. Whatever the constant k,
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this does not affect the final result since everything is driven by the choice of the
number of total contacts and the rate of internal contacts.

e Lastly, the matrix has to be made symmetric. The numbers of total contacts are
allowed to vary from a region to another, but they remain close.

3 Data Assimilation with Interacting Particle Simulation

Data assimilation is a term used by meteorologists and oceanographers to refer to the
integration of real time observational data into simulation models. Two ingredients
are required for this, one being a mechanistic model of the time evolution of the
process. This model, which is not necessarily deterministic, is usually based on the
physics of the process. The other ingredientis an observational equation, which should
realistically model what the observed data tells us about the state of the process.

Sequential data assimilation is often based on some form of Kalman filtering
(Bertino et al., 2003) In this paper, we present the application of an alterna-
tive method, known as particle filtering (Doucet et al., 2001; Oudjane, 2000;
Cauchemez, 2005) which can handle highly non-linear dynamics at the expense of
performing a large number of simulations in parallel. Approximations of the state
conditional distribution are obtained sequentially and are based on populations of
simulations (i.e. the particles).

3.1 The Principles of Particle Filtering

Let N, be the number of regions and N; the number of simulations. To notation, we
denote the state vector at time ¢ by:

X, ={t(x), L(x);x = 1...Ny}

where [ is itself structured according to the elapsed time since contagion. The sim-
ulated particles at time ¢ are indexed by an exponent and so X! refers to the i’
simulation. Writing Dy., = Dy, - - - , D, the observational data up to time 7, we look
for an approximation of the conditional distribution

f(Xt |D0:1)

of the current state given the data. Note that this is a less demanding objective than
that of approximating the whole trajectory. Bayes formula, which tells how the exact
conditional distribution should be updated, gives a clue on how this should be done.
We have:

f(X,|Do.) = f(X/|D;, Doy—1)
f(X:, D] Do)
[ f(xt, Di| Do —1) dx;
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Now, using two conditional independence properties of the model:

f(Xi, Di|Doy—y) = /f(Xt,xz—1,Dr|D0;t—1)dxr—1

/ f(Dl‘lxts Xi—1, DO:tfl) f(Xt |xi—1, DO:tfl)
f(xi—11Do:y—1) dx;—
/f(Dr|Xt) f(Xt |xr71) f(xr71|D0:r71)dxr71

we get the update equation:

. f f(Dt|Xr) f(Xt |x,,1) f(xtfl|D0:r71)dxr71
FEADot) = 1Dy 1x,) £(x0 1511) f (it | Do) e, e

In these equations:

® f(X,|x,_1) represents the system’s evolution distribution. The term:

f(Xt |xt—l) f(xt—l |D0:t—l)

can be interpreted as a one step free evolution of the system, starting from a
random initial state, generated according to the conditional distribution at # — 1.

e f(D,|X,) represents the observational process. It can be interpreted as the like-
lihood of X, relatively to data D,.

The updated distribution can thus be viewed as a reweighted version of the predictive
one. The assimilation method follows this algorithm.

To describe the sequence, we assume that at # — 1 an approximation of f(X,_|
Dy.;,—1) is available in the form of an empirical distribution of N, particles:

s

1 N,
fl_l = N. Z(SXLI
S =1

The steps of the algorithm are then as follows:
Prediction step. Free evolution of each particle, according to the model:

X, - Xxi
When, as it is the case for the present SIR model, this evolution is stochastic,
independent paths are generated. .
Conditioning on D,. This involves the likelihood calculation, f(D;|X!) and its

normalization, which yields the following probability masses:
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_ fDux))
Y, F(DIX])

i

At this point, we have the following approximation of the conditional distri-
bution:

’F(Xt|D0:t) = Z wj 5)?;‘

Resampling. The iteration is not yet complete, for we do not have an approximation
having the form of an empirical distribution. The idea is to draw a new set of
N; particles independently from f(x;| Dy, ). This is just a weighted resampling
of the set X b X ,N * favoring the particles having the highest likelihood.

There are numerous possible variations of this algorithm. For example the inde-
pendent resampling, which is not very efficient, can be replaced by better schemes
regarding the representation of f by empirical distributions.

4 Results

In order to test the efficiency of the model, we have to test the algorithm on simulated
data first. The simulation algorithm randomly generates a time series of Markov
chain states based on the transition matrix. Then, at each time step, in each region,
given this state, the algorithm generates simulated new cases and recovered, com-
putes the susceptible, infected and removed and finally generates the reported cases
given the new cases. We then only keep the reported cases and assimilate them. If the
algorithm is efficient, we should recover a Markov-chain state time-series similar to
the one that generated the cases. We can also compare the estimation of the number
of infected to the simulation.

4.1 Results on Simulated Data

In order to test the efficiency of the algorithm, we assimilate simulated observational
data (of which we know all the parameters, especially the Markov chain states for
all r), hoping to find back the same Markov chain states.

Figure 2 shows the original Markov chain, the simulated cases, the estimated
Markov chain and the ratio of the simulated number of infected against the estimated
number of infected for two regions.
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Fig. 2 Assimilation of simulated data (from top to bottom): original Markov chain, estimated
Markov chain, simulated declarations, ratio of simulated/estimated number of infected

4.1.1 First Facts
Problems at the Beginning of the Time Period

There are two estimation problems at the beginning. During the time when there are
no reported cases, or only few (less than two per day per region), the algorithm is
in trouble for finding in which state the Markov chain is, and it underestimates the
number of infected.

The underestimation is due to the fact that, in spite of the increasing number of
infected in the simulation, the declaration probability is so low that there are no
declarations for a long time. Therefore, the algorithm finds out only quite late (at
the time of the first reported case) that there are more infected than estimated. Then
it catches up on the number of infected by only keeping the particles in an epidemic
dynamic and the number of infected is correctly estimated.

In particular, the likelihoods of the particles do not enable to decide between
the two types of particles: because the number of infected is low, and because the
declaration probability is low, even particles in an epidemic dynamic do not generate
enough infected individuals to have a reported case. In that situation both types of
particles are just as likely, and the algorithm cannot decide between them.

As said previously the algorithm has to catch up on the number of infected in
the early stage of an epidemic. Therefore, only particles in an epidemic dynamic are
kept, so that the number of infected progressively increases. Sometimes this is right,
at other times the number has increased only because of a contagion within other
regions.
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4.1.2 Sensitivity Due to Parameter Variations

In this section we discuss the influence of the parameters which are most difficult
to estimate.

Transition Probability

In the case of a simple two-state Markov chain model, where we chose to have the
same transition probability from O to 1 than from 1 to 0, there is only one param-
eter. It is not actually a parameter which has to be known precisely. If we assume
that this probability is totally unknown in reality, then in the assimilation algorithm
that probability is only the proportion of particles generated with the same state
as the previous particles. Therefore, even if only a few particles are in the right
state, these are the ones which are kept in the resampling step. We only have to
choose a probability high enough to generate a small number of particle at each
step. On the other hand, a too high probability would generate too many epidemic
particles at the beginning and lead to an overestimation of the number of infected
individuals—even more than it already does. The good news is, however, that in the
assimilation of simulations this probability actually has shown to have very little
influence on the results.

Contamination Probabilities t;

Every contamination probability has to be calculated with reference to a single one.
Indeed, in the case of a simple model, an epidemic can start if each infected can
infect more than one susceptible. In this model, the number of susceptibles contami-
nated by an infected is defined as R = t-C- D, t being the contamination probability
of an S-I contact, C the number of contacts per person, and D the average length
of the infection. The probability 7; above which the epidemic can start is therefore
T = C.ID = (0.0018 in our case, where C = 100 and D = 5.5. Tests show that even
though our model is more complex, this probability does correspond to a case when
the epidemic neither starts nor is completely extinct: the number of infected stays
constant.

Next, the high and low values of T must be chosen on each side of ;.

The low value does not have a great influence on the results. It only affects how
fast the infection stops when dynamics are non-epidemic. However, to avoid total
extinction, randomly chosen infected are introduced.

The high value is very hard to estimate from the data. If the state of the Markov
chain were known at each time step, the probability could be estimated thanks to
the total number of infected and the length of the epidemic. But given that we know
neither the state, nor the probability corresponding to the state, this estimation is
much harder.

A first rough estimation can be done, prior to the assimilation, by simulating a
time series with constant epidemic dynamics. In that case we can avoid to choose a
7 for which the epidemic is too strong or too weak.
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Another approximate way to adjust this value is simply to look at the estimated
Markov chain state. If the value stays high all the time, it is likely that the probability
was chosen too low. If the value is oscillating throughout the epidemic period, it is
is likely that the probability was set too high.

The Number of Initial Cases

The number of cases in the non-epidemic period is very hard to estimate. Actually,
we do not know if the start of an epidemic is caused by a small number of infected
remaining from a previous epidemic, or whether it is due to infection coming from
abroad. Since we start the assimilation at a time when we know, almost for sure, that
the epidemic has not yet started anywhere, this number of infected represents a very
small proportion of the population. Moreover, given that we inject randomly a few
infected to prevent the extinction of the infection, even if that number is very small,
there will be a compensation from this injection. And if it is too high (which can
only mean that it generates at least one declaration whereas it should not), it will
tend to rapidly decrease.
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Fig. 3 Reported cases from July 2003 to September 2005
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Other Parameters

The declaration probability (mainly based on the proportion of active doctors) and
the recovery probability are relatively well known. This is to say that, given the
confidence with which we know them, variations inside that confidence interval did
not have a great influence on results.

4.2 Results on Real Data

Finally, we confronted the algorithm to real data taken between July 2003 and July
2005 as shown on Fig. 3. The data were assimilated into a two-state Markov chain
model with 7;= 0.0006 and 7,= 0.0027. Results on Fig. 4 show the seemingly
hesitating oscillation of the Markov chain between its two states in non-epidemic
periods, but overall the algorithm appears to react fairly quickly to an increase in
the number of declarations.

An important side-product of the present forecasting procedure is that it provides
an estimation of the total number of infected people in each region at every time step.
Fig. 5 displays the time evolution of the estimated number of infected individuals
during the two epidemics.
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