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aussi soyez sûrs, très chers amis, que je n’oublie personne. Une pensée particulière va
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Résumé

La recherche thérapeutique a de plus en plus recours à des techniques de modélisa-
tion, dites de criblage virtuel, visant à corréler la structure d’une molécule avec ses
propriétés biologiques. En particulier, l’utilisation de modèles prédictifs quantifiant la
toxicité d’une molécule ou son activité vis à vis d’une cible thérapeutique, permet de
réduire de manière considérable le temps et les coûts nécessaires à la mise au point de
nouveaux médicaments.

Nous nous proposons d’aborder ce problème dans le cadre des méthodes à noyaux,
qui permettent de construire de tels modèles de manière efficace dès lors que l’on dis-
pose d’une fonction noyau mesurant la similarité des objets que l’on considère. Plus
particulièrement, l’objet de cette thèse est de définir de telles fonctions noyaux entre
structures bi- et tri-dimensionnelles de molécules, ce qui se traduit d’un point de vue
méthodologique comme le problème de comparer des graphes représentant les liaisons
covalentes des molécules, ou des ensembles d’atomes dans l’espace.

Plusieurs approches sont envisagées sur la base de l’extraction et de la compara-
ison de divers motifs structuraux permettant d’encoder les groupes fonctionnels des
molécules à diférents niveaux de résolution. Les validations expérimentales suggèrent
que cette méthodologie est une alternative prometteuse aux approches classiques en
criblage virtuel.
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Abstract

Computational models play a role of increasing importance in therapeutic research.
For example, accurate predictive models accounting for the biological activity and
drug-likeliness of molecular compounds can lead to substantial savings in terms of
time and costs for the development of new drugs if they are applied early during the
drug discovery process. While processing chemical data in this context involves many
different tasks, including for instance clustering, regression, classification or ranking,
most of them are related to Structure-Activity Relationship (SAR) analysis. In other
words, the central problem is to find a relationship between the structures of molecules
and their biological activity, under the basic assumption that molecules having a similar
structure are likely to exhibit a similar biological behavior.

Decades of research in machine learning and statistics have provided a profusion
of models for that purpose. Each of them has its own specificities, and the choice of
a particular model has to be related to the final goal of the analysis, usually balanced
between criteria of efficiency and interpretability. Nevertheless, a common issue to all
models concerns the data representation, or in other words, how to handle molecular
structures. Indeed, most machine learning algorithms are vector based, and typically
require to encapsulate molecules into vectors of limited size. Prior to building a model,
the modeller must therefore resort to chemical expertise or heuristic feature selection
methods in order to choose, among the plethora of molecular descriptors, which de-
scriptors are relevant with respect to the property to be predicted.

An alternative direction has been explored recently using the theory of kernel meth-
ods. Kernel methods, and in particular Support Vector Machines, are gaining increas-
ing popularity in the machine learning community for their well-sounded formulation
and good performance on many real-world problems. This family of algorithms pos-
sesses two important properties. First, it theoretically allows learning in very high
– potentially infinite – dimensions thanks to a heavy use of regularization ; second,
instead of an explicit representation of data as vectors, it only requires inner prod-
ucts between such representations, through what is usually referred to as a positive
definite kernel function. Kernel functions stand at the interface between the data and
the learning algorithm, and constitute the key element of kernel methods. Because
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many real-world data do not have a natural vectorial representation, the problem of
defining kernel functions for structured data, such as strings, trees and graphs, has
been drawing a considerable attention in the machine learning community in the last
few years.

Ushering in this avenue, we consider in this thesis the problem of designing kernel
functions for molecular structures. Together with the panoply of kernel methods, this
might offer a unified approach to structure-activity relationship analysis, without the
need of explicitly extracting molecular descriptors. On the methodological side, this
approach usually boils down to defining a measure of similarity between graphs repre-
senting molecules as sets of atoms connected by covalent bonds. On the practical side,
however, the nature of the graph structure often renders intractable the traditional
substructure-based approach to the design of kernel between structured data, that
has been, for instance, successfully applied to strings and trees. Nevertheless, several
graph kernels that circumvent this complexity issue have recently been proposed. The
approach adopted is often that of restricting the degree of complexity of the substruc-
tures characterizing the graphs, and, in particular, pioneer graph kernels propose to
represent a molecule by a set of simple chains of atoms. In the first part of this the-
sis, we revisit this pioneer approach with the double goal to reduce its computational
complexity and improve its expressive power. This work is cast into a more general
framework in the second part of the thesis, where, based on a recently introduced
formulation, the set of substructures characterizing the graphs is extended to the class
of trees. Finally, motivated by the fact that the tridimensional information plays a
central role in many biological mechanisms, we apply, in the third part of the thesis,
this general methodology to handle three-dimensional structures of molecules.
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Chapter 1
Context

In this preliminary chapter, we lay the general context of this thesis that motivates
the design of kernel function between molecular structures. We start by a brief in-
troduction to the field of therapeutic research in Section 1.1, the main goal being to
highlight the impact of computational models in its rationalization, and their potential
to dramatically decrease the time and cost required to bring a new drug to the market.
After discussing several open issues raised by the introduction of computer science in
chemistry in Section 1.2, we turn to the main topic of the thesis in Section 1.3 with
the presentation of the Support Vector Machine (SVM) algorithm. SVM and kernel
methods have been drawing considerable attention in the machine learning community
over the last decade because of their good performance on many real world applica-
tions. Chemical informatics does not disrespect this trend, and Section 1.4 illustrates
the increasing popularity gained by SVM for the prediction of biological properties of
molecules. A particular emphasis is put in this latter section on the design of kernel
functions for molecular structures, that offers an alternative to their traditional vector-
based representation and constitutes the central topic of this thesis. Finally, Section
1.5 summarizes our contributions for that purpose, and draws the outline of the thesis.

1.1 Introduction to modern therapeutic research

This section is meant to give a quick overview of therapeutic research to nonspecialists.
After a general introduction to the drug discovery process in Section 1.1.1, we focus
on its evolution over the last two decades. In the 1980’s, the development of high-
throughput technologies that we introduce in Section 1.1.2 was expected to solve the
drug discovery problem by a massive parallelization of the process. In practice, it
turned out that, if they were not carefully deployed, these new technologies could lead
to such a tremendous increase of candidate molecules that the drug discovery process
became like finding a needle in a haystack. As a result, the large-scale approach has
been progressively abandoned over the recent years, for the profit of more rationalized
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2 CHAPTER 1. CONTEXT

process, in which the computational methods introduced in Section 1.1.3 have gained
a role of increasing importance.

1.1.1 Basics of drug discovery

Developing a therapy for a particular disease is a process usually articulated around
three steps. The first step of target identification consists in the identification of a
biological molecule, often a protein, involved in a mechanism leading to the disease.
The purpose of the second step is to identify a small molecule with an interesting
biological profile that is able to interfere with this therapeutic target. Eventually,
before this drug candidate enters the market, the third step of clinical validation must
demonstrate its efficiency and safety through an extensive evaluation on animals and
humans.

Biological target

The primary goal in therapeutic research is to interfere with a metabolic or signaling
pathway responsible for a disease. Metabolic and signaling pathways are cascades of
chemical reactions occurring within the cell, that lead respectively to the formation
of a metabolic product to be used by the cell, or to the alteration of gene expression
by the activation of transcription factors. The task of therapeutic research is to find
a drug molecule able to modify such a pathway by the alteration of a key entity,
usually a protein, involved in the corresponding cascade of reactions: the therapeutic
target. Target identification involves both biological and chemical knowledge, in order
to discover potential targets and assess their ”drugability”, that is, to what extent they
can be altered by a drug molecule (Drews, 2000).

While current drug therapies address only about 500 biological targets, 45% of
which belong to the class of G-protein coupled receptors (GPCR), a family of cell
membrane proteins, and 28% are enzymatic proteins, it is assumed that at least 10
times more targets could be exploited for future therapies (Drews, 2000). The process
of target identification is likely to benefit from the recent completion of the Human
Genome Project and the advent of high throughput gene activity monitoring devices.
In particular, potential therapeutic targets may directly be identified from the dif-
ference of proteins expression observed in microarray experiments involving healthy
and diseased populations, and the number of identified targets is expected to dramat-
ically increase over the next few years (Debouck and Goodfellow, 1999; Chanda and
Caldwell, 2003).

Before turning to the step of drug discovery itself, the identified target must be
validated in order to demonstrate its critical role in the disease. Target validation
usually involves in-vitro and/or in-vivo experiments, typically based on gene knocking-
out experiments and transgenic animal models.
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Drug discovery

In a second step, the goal is to find a small molecule, called a ligand, able to bind by
intermolecular forces to the target and alter its normal functioning. This interaction
is said to be direct when the drug binds to the active site of the target and competes
with its natural substrate, or indirect if the drug binds to a secondary site and induces
changes in the chemical conformation of the target, thereby modulating its affinity
with its natural ligand. For example, these two strategies have been exploited by drugs
targeting HIV reverse transcriptase, either targeting the active site of this enzyme, or
a secondary site (Ren and Stammers, 2005).

In order to quantify the activity of the ligand, corresponding to its degree of inter-
action with the target, an experimental setup known as a biological assay for activity
must be designed. In the case of an enzymatic target for instance, the activity of the
ligand corresponds to its degree of competition with the natural substrate of the en-
zyme, usually expressed as the concentration at which it reduces by 50% the catalytic
action of the target, a quantity known as IC50.

Molecular compounds can subsequently be screened for activity in order to find
promising drug candidates, or lead compounds, able to interfere with the target at low
concentration rates. The number of candidate molecules with simple drug character-
istics that could be synthesized is theoretically assumed to be of the order of 1060

(O’Driscoll, 2004). The identification of promising candidates among this vast (almost
infinite) amount of molecules strongly relies on biochemical expertise and is tradition-
ally achieved in an iterative process, sometimes denoted as the drug discovery cycle,
alternating between steps of selection, possibly synthesis, and screening of candidates,
the results of the screening guiding in turn the next selection step (Manly et al., 2001).
Early screens of the drug discovery cycle identify hits: molecules showing chemical
activity, but not necessarily fulfilling the efficiency requirement of leads (Jorgensen,
2004). To this hit generation follows a hits to leads phase, where the identified hits are
validated by confirmation screens, and possibly structurally refined in order to increase
their potency with respect to the target. If sufficient potency is attained, additional
counter screens may be applied to ensure that the lead candidates do not interact with
homologous proteins of the target, with the goal to limit their side effects.

At this point, lead compounds with good binding abilities are identified. However,
binding to the target is not a sufficient condition for the identification of a promising
drug candidate. Indeed, not only must a drug interfere with the therapeutic target,
but it must also have a good biological profile, and in particular a low toxicity in
order to be harmless to the organism, and good pharmacokinetics properties. Broadly
speaking, pharmacokinetics is related to the behavior of the drug in the body, such as
its ability to enter the bloodstream and reach the target, and to be further destroyed
and eliminated by the body. Major pharmacokinetics properties are compiled in the
acronym ADME, standing for Absorption, Distribution, Metabolism and Excretion
(Xu and Hagler, 2002; Boobis et al., 2002). The final step of drug discovery is a phase
of lead optimization, where the chemical structure of the leads is refined in order to meet
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these drug-like criteria. Contrary to screening assays, usually carried out in vitro, lead
optimization often involves in vivo experiments on animals. This optimization process
is highly iterative and is considered to be a major cause of failures of the drug discovery
process. When a lead compound with promising drug-likeliness is discovered, the final
step toward a marketed drug is a phase of clinical validation.

Clinical validation

Before entering the market, the drug candidate must be validated by an extensive
testing phase, aiming to demonstrate its efficiency and safety for the human organism:
the clinical validation. Clinical validation starts with preliminary tests for safety on
animals, the pre-clinical step, and is subsequently articulated around three phases
(DiMasi et al., 2003):

• Phase I (1-2 years) : tests for safety are first carried out with a limited number
(< 100) of healthy persons.

• Phase II (1-2 years): tests for safety and efficiency are then applied to a larger
pool of several hundred persons, from both the healthy and diseased groups.

• Phase III (2-3 years): finally, a large scale efficiency test, involving a larger pool
of persons (in the thousands) from different demographic areas, completes the
study.

Eventually, provided this clinical study obtains necessary government approvals, de-
livered for example by the Food and Drug Administration (FDA) in the USA and the
European Agency for the Evaluation of Medical Products (EMEA) in Europe, com-
mercial exploitation of the drug molecule can begin.

As a conclusion, it is worth stressing that therapeutic research is a very complex
process, that raises tremendous costs in terms of time and money. A recent study
involving 68 drugs approved in the 1990’s in the USA, showed that the average time
and cost of drug development, from the step of target identification to the obtaining of
FDA approvals, were nearly 15 years and US$ 900 millions (DiMasi et al., 2003). Over
the last two decades, however, technological breakthroughs, together with a progressive
reconsideration of the process itself, has led to major revolutions in the process of
finding a drug.

1.1.2 High-throughput technologies

From now on, we focus on the problem of drug discovery itself, that is, the identifi-
cation of promising clinical candidates for a validated therapeutic target. Until the
1980’s, due to the cost (both in time and money) of synthesizing, and testing new
molecules, the step of ”hits generation” was the main bottleneck of the drug discovery
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process (Bleicher et al., 2003; Xu and Hagler, 2002). Advances in miniaturization and
robotization in the 1980’s led to the appearance of high-throughput screening (HTS)
devices, allowing to massively screen in parallel pools of hundreds or thousands of
molecules, and nowadays, ultra-HTS allows major pharmaceutical company to screen
up to 100 000 molecules a day (Armstrong, 1999; Bajorath, 2002). In response to
this new technology, chemical research developed at that time methods to synthe-
size molecules in parallel, thereby offering the possibility to generate large libraries of
molecules. In particular, combinatorial chemistry makes it possible to create a large
number of molecules from the combination of elementary building blocks at relatively
low cost (Lazo and Wipf, 2000; Miertus et al., 2000).

The synergy between these two technologies was expected to facilitate the drug dis-
covery cycle by a systematic screening of large pools of compounds (O’Driscoll, 2004;
Xu and Hagler, 2002). In practice however, it was soon realized that this large scale
approach was not an answer to the drug discovery problem. While the number of iden-
tified hits could substantially be increased, no corresponding growth in the number of
drugs entering the market was observed, and people realized that the real bottleneck
of the drug discovery process lied in the steps of lead identification and optimization
(Drews, 2000; Bleicher et al., 2003). This observation progressively led to a recon-
sideration and rationalization of the drug discovery process, in which computational
models have gained a role of tremendous importance (Manly et al., 2001).

1.1.3 Computational models

With the necessity to exploit the massive amount of data generated by high-throughput
technologies, computer science methods are being increasingly used in the drug dis-
covery process and in chemistry in general. In order to unify the blend of computer
science methods and chemistry, F.K Brown coined in 1998 the term chemoinformatics
as

”Chemoinformatics is the mixing of those information resources to trans-
form data into information and information into knowledge for the intended
purpose of making better decisions faster in the area of drug lead identifi-
cation and optimization.”

This general definition encompasses many aspects, and in particular the representa-
tion, storage, retrieval and analysis of chemical information. Most chemoinformatics
techniques are well established from decades of academic and industrial research, and
it has been suggested that chemoinformatics is just ”a new name for an old problem”
(Hann and Green, 1999). The field of application of chemoinformatics methods in
therapeutic research is very large. In this section, we introduce three major steps
taken toward the rationalization of the drug discovery process. We refer to the text-
books (Leach and Gillet, 2003; Gasteiger and Engel, 2003) for a wider overview of
chemoinformatics methods.
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Library design

It was soon realized that the number of compounds that could be generated by com-
binatorial chemistry was so huge that systematically screening random combinatorial
libraries was unlikely to discover lead compounds. This observation motivated a ratio-
nalization of the screening process in order to limit the number of HTS assays, with
the view to reduce the time and costs of the step of lead identification. The focus has
now changed from the screening of large combinatorial libraries to a process of library
design in order to define smaller, but information rich libraries (Hann and Green, 1999;
Bajorath, 2002; Manly et al., 2001). Because the goal of the screening evolves during
the drug discovery process, the design of the libraries to be screened must be related
to the advancement of the project. In order to maximize the probability of identifying
structurally different hits, early screening assays must involve diverse libraries giving
a broad coverage of the chemical space (Xu and Hagler, 2002). On the contrary, in
the later ”hits to lead” step, targeted libraries made of molecule structurally similar to
the identified hits must be designed (Manly et al., 2001).

Library design is therefore concerned with the spread in the chemical space of the
libraries to be screened. Standard algorithms involved in library design are based on
a partitioning of the chemical space, or on a clustering of molecules in sets of similar
molecules (Hann and Green, 1999; Bajorath, 2002). Diverse libraries can for instance
be defined by picking representative elements from the bins of the chemical space
partition, or the cluster of molecules, and targeted libraries can directly be obtained
from the bins, or the clusters, the hits belong to. On the methodological side, this type
of algorithms is based on a measure of similarity between molecules in order to define
neighborhood relationships in the chemical space. Assessing molecular similarity has
been drawing considerable attention in chemoinformatics, and is the topic of Section
1.2.2.

Virtual screening

Virtual screening, or in silico screening, is the term broadly used to denote the compu-
tational analysis of databases of compounds aiming to identify candidates having the
desired activity for a specific therapeutic target. This can be seen as an alternative to
performing wet-lab experiments with the key advantages that arbitrary large amounts
of molecules can be considered, molecules need not to be synthesized, and even virtual
molecules, that is, molecules that cannot be synthesized yet, can be evaluated. With
the identification of potentially active compounds, virtual screening can therefore help
reduce the number of screening assays, and motivate the purchase or synthesis of new
molecules (Manly et al., 2001; Bajorath, 2002). On the practical side, virtual screen-
ing methods require either the knowledge of the structure of the therapeutic target,
usually obtained by crystallography, or the measured activity of a set of compounds.

If the structure of the target is known, the most common approach to virtual screen-
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ing is docking, which consists in deriving an activity score from the optimal positioning
of the ligand in the active site of the target (Kitchen et al., 2004; Jorgensen, 2004).
Docking algorithms consist in two core components: a search algorithm, in charge of
positioning the ligand, and an evaluation function, quantifying the strength of the re-
sulting binding in terms of energy, through the evaluation of intermolecular forces. The
search algorithm needs to optimize the three dimensional configuration of the ligand,
its conformation, with respect to the spatial and electrostatic structures of the active
site. The docking approach to virtual screening consists in docking all the molecules
from the database, and selecting the top scored molecules as the most promising active
molecules. Because of the presence of rotational bonds, molecules usually take a large
number of conformations, and docking can be a quite complex process in practice.
Different strategies can be adopted to explore the conformational space of the ligand.
The mainstream approach is to consider the ligand as a flexible structure. In flexible
docking for instance, the optimal conformation is obtained by progressively tweaking
the rotational bonds of the molecule. Alternatively, in incremental docking, the ligand
is first be decomposed into substructures, and is subsequently incrementally grown in
the active site from the docking of its substructures. The opposite approach considers
a set of stable conformations of the ligand, and lets the score to the ligand be the
highest score obtained by its conformations in a rigid docking, based on global opera-
tions of translation and rotation only. While they are considered to be less predictive
than their flexible counterparts, rigid methods are computationally cheaper and easier
to automate, and for this reason, they can very useful to rapidly remove molecules
of low activity in a preliminary docking step (Kellenberger et al., 2004). Common
docking software are GOLD1 for the flexible docking (Jones et al., 1997), FlexX2 for
the incremental docking (Rarey et al., 1996) and FRED3 for the rigid docking of multi
conformers (Miteva et al., 2005).

Alternatively, de novo design can be used to find potential inhibitors from scratch
given the structure of the target. De novo algorithms generate a series of candidate
molecules obtained by the addition of substituents to a predefined core structure fit-
ting in the binding site. Substituents are chosen from a set of typical drug fragments,
and their addition to the core structure must lead to a synthetically available molecule
having a good complementarity with the binding site of the target (Kitchen et al.,
2004; Jorgensen, 2004).

If the structure of the target is unknown, virtual screening methods can be de-
rived from a pool of compounds of known activity obtained by preliminary screenings
experiments. This is known as the ligand-based approach to virtual screening, in oppo-
sition to the above structure-based approach. A simple ligand-based approach consists
in ranking the molecules from the dataset with respect to their similarity to the set

1http://www.ccdc.cam.ac.uk/products/life_sciences/gold/
2http://www.biosolveit.de/FlexX/
3http://www.eyesopen.com/products/applications/fred.html
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of known active compounds, and choosing the most promising candidates as the top
ranking ones (Jorgensen, 2004). This approach is similar in essence to the clustering
and partitioning algorithms involved in the problem of targeted library of the previous
section. However, the approach is more general here since the simple criterion of prox-
imity in the chemical space can be replaced by more evolved ranking schemes taking
simultaneously into account the whole set of active compounds (Wilton et al., 2003).

Alternatively, the set of active compounds can be used to derive a pharmacophore
model representing a three dimensional arrangement of molecular features responsible
for activity (or at least thought to be). This pharmacophore model can then be used as
a filter to remove from the dataset the compounds not fulfilling this necessary condition
of activity (Jorgensen, 2004; Finn et al., 1998).

Because their focus is on the active compounds only, the above approaches can be
criticized by the fact that they do not take fully advantage of the screening experiments
(Manly et al., 2001). The more general approach consists in building a model correlat-
ing the structure of the molecules with their biological activity from the whole pool of
screened molecules, thereby integrating information about the activity as well as the
inactivity of the compounds, which is ignored in the above approaches. This problem
is known as modeling Structure-Activity Relationship (SAR), and involves methods
from the fields of statistics and machine learning. We postpone its introduction to
Section 1.2.3.

When the structure of the target is known, the structure-based approach naturally
stands as the more rational way to virtual screening, and was successfully deployed in
several recent drug development programs (see Klebe, 2000, and references therein). It
must be stressed that the ligand-based approach is nevertheless of considerable interest
for at least two reasons. First, the docking approach is computationally heavy and
hard to automate, which limits in practice the size of the databases of molecules that
can be considered (Bleicher et al., 2003). Second, an even more striking point is the
fact that, in many cases, the structure of the target is difficult, if not impossible, to
obtain, and the docking approach is not even applicable. In particular, this is the case
for the class of GPCR targets, that constitute almost 50% of the current therapeutic
targets, and this situation is actually likely to become the common case in the near
future, since the number of potential therapeutic targets is expected to dramatically
increase with recent advances in the fields of genomics and bioinformatics (Manly et al.,
2001).

As a conclusion, we can note the strong synergy between virtual and physical
screenings: screening assays supply valid data to build, or refine, the virtual screening
models, that in turn optimize the screening assays. Combining virtual and high-
throughput screening in an iterative manner leads to a process of sequential screening
(Bajorath, 2002; Manly et al., 2001; Warmuth et al., 2003). While this synergy is
particularly obvious in the ligand-based approach, this sequential scheme may as well
be helpful to refine a docking model, where the optimization of the evaluation function
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is known to be a difficult task in practice (Kitchen et al., 2004).

Early integration of drug-likeliness

It is now widely accepted that the major cause of failure in drug discovery is the
poor drug-likeliness, that is, the bad pharmacokinetics and toxicity properties, of the
clinical candidates (Bleicher et al., 2003; Xu and Hagler, 2002; Butina et al., 2002;
Manly et al., 2001). This observation revealed that in the phase of lead optimization,
the ability to improve the drug-likeliness of candidates selected on the sole basis of their
activity was overestimated, and led people to integrate the notion of drug-likeliness
earlier in the process of lead identification (Manly et al., 2001; Bleicher et al., 2003).
This reconsideration of the sequential paradigm of lead identification and optimization
marks a major advance toward the rationalization of the drug-discovery process, which
is likely to severely reduce clinical attrition, and, as a consequence, the overall cost the
process (Bleicher et al., 2003; DiMasi et al., 2003).

The seminal example of early drug-likeliness integration is due to Lipinski and
co-workers who proposed a simple set of rules, known as the rules of five, relating
the propensity of a molecule to be absorbed by the organism to general molecular
properties, such as the molecular weight and the number of hydrogen bonds donors
and acceptors (Lipinski et al., 2001). These rules are commonly used as a filter to
remove compounds from the drug discovery pipeline, molecules being unlikely to be
absorbed if they violate at least two rules. Similar filters were proposed to address
other drug-like properties, in particular in the context of toxicity, where potentially
toxic molecules can be identified by the detection of toxophores, that is, reaction groups
responsible for toxicity (Bajorath, 2002; Manly et al., 2001).

Following the SAR approach involved in virtual screening, statistical and machine
learning models that correlate directly the structure of the molecules with their drug-
like properties are also useful in this context (Butina et al., 2002; Boobis et al., 2002).
Strictly speaking, these models are not related to SAR analysis since the term activity
refers to the notion of binding to the target, and the terminology usually adopted is
that of Structure-Property Relationship (SPR) analysis. Nevertheless, integrating the
notion of drug-likeliness in the process of lead identification can be seen as casting the
problem of virtual screening and SAR analysis, into a more general multi-dimensional,
or multi-property optimization framework (Ekins et al., 2002; Bleicher et al., 2003; Xu
and Hagler, 2002), and the terms virtual screening and SAR often reflect this broader
meaning.

In conclusion, it must be clear that these methods are highly complementary in
the process of identifying lead candidates with promising drug-likeliness. In the case
where the structure of the target is unknown, Figure 1.1 gives a schematic view of
their possible integration in the drug-discovery process.



10 CHAPTER 1. CONTEXT

SAR
model

− diverse and drug−like compounds

SEQUENTIAL SCREENING

LARGE SCALE VIRTUAL SCREENING
− virtual library

SPR
models

− drug−like filters and SPR models

PRIMARY SCREENING POOL
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assay

POOL OF AVAILABLE COMPOUNDS
POOR DRUG−LIKELINESS REDUCTION DIVERSE SUBSET SELECTION

− library design

Figure 1.1: A possible integration of computational methods in the drug discovery
process. Molecules with poor drug-like properties are first removed from a pool of
available compounds using SPR models and/or drug-like filters. A primary screening
pool is subsequently defined by choosing a diverse subset of candidates. The results of
the screening help building a SAR model, which, in conjunction with SPR models, can
be used in a sequential screening approach to discover lead compounds with promising
drug-likeliness.

1.2 Open issues in chemoinformatics

The introduction of computer science in chemistry raises a lot of practical issues. In
this section we focus on the problems of representing molecular structures, assessing
their similarity and the prediction of molecular properties, that are central to virtual
screening applications.
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Figure 1.2: 1D, 2D and 3D representations of the aspirin molecule.

1.2.1 Representation of molecular structures

Different perspectives can be adopted to represent a molecular structure:

• the simplest 1D representation is defined from the atomic constitution of the
molecule.

• the 2D representation is a graph called molecular graph, representing the covalent
bonds between the atoms of the molecule.

• finally, in the 3D space, a molecule can be seen as a skeleton, resulting from
the introduction of atomic coordinates in the molecular graph, or as various
molecular surfaces representing the projection of physicochemical properties of
the atoms, such as their electrostatic potential, hydrophobicity, charge or Van
der Waals volume, on a sphere enclosing the molecule (Gasteiger and Engel,
2003, section 2.10). Theses surfaces are in particular of great interest in docking
applications in order to quantify the complementarity between a ligand and a
target. However, molecules are not inert elements, and because of the presence of
rotational bonds, they can take several low-energy spatial configurations known
as conformations. Considering the 3D structure of a molecule therefore raises the
problem of conformational analysis, which boils down in practice to representing
the molecule as a set of conformations, in an approach called multi-conformers, or
as a flexible structure, in which case a structural degree of freedom is introduced
for each rotational bond.

Figure 1.2 presents different representations of the aspirin molecule. On the practical
side, chemoinformatics methods are often unable to handle directly these representa-
tions, and require to encapsulate the structural information into a set of descriptors.
Molecular descriptors can be classified into three categories, depending on the dimen-
sionality of the representation from which they are derived.
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1D / constitutional descriptors

1D descriptors are derived from the atomic composition of the molecules. They cor-
respond typically to global molecular properties, such as the molecular weight and
hydrophobicity, or general constitutional features, such as the number of atoms of
particular types or hydrogen bond donors and acceptors. These descriptors bear lit-
tle information about the structure of the molecule and are essentially used to derive
filters such as the Lipinski’s rule of five, or in combination with other descriptors.

2D / topological descriptors

2D descriptors are derived from molecular graphs. A first class of 2D descriptors con-
sists of general topological indices, related to the notion of graph invariant of graph
theory. Seminal examples include the Wiener and Randic connectivity indices, defined
respectively from the length of the shortest path between pairs of atoms, and their
degrees in the molecular graph (Gasteiger and Engel, 2003). In a related approach,
topological autocorrelation vectors measure the autocorrelation of atomic physicochem-
ical properties, such as partial charges or polarity, from pairs of atoms separated by
a given topological distance, expressed as the length of the shortest path connecting
atoms in the molecular graph (Moreau and Broto, 1980).

A second class of descriptor represents a molecule by a vector indexed by a set of
structural features, and relies on the extraction of substructures from the molecular
graph. This process defines a molecular fingerprint, and in practice, two different ap-
proaches can be adopted. The first approach considers a limited set of informative
structures called structural keys to characterize the molecule. Each structural key is
mapped to a bin of the fingerprint, which either accounts for the presence or the fre-
quency of the structure in the molecule. A typical implementation is a bistring indexed
by 166 predefined structures known as the MDL MACCS keys (McGregor and Pallai,
1997). In the alternative approach, molecules are represented by simple structural
features called linear molecular fragments, defined as successions of covalently bonded
atoms. In this case, typical fingerprints, such as the Daylight fingerprints for instance,
characterize a molecule by its exhaustive list of fragments made of up to seven or
eight atoms. Because the number of fragments occurring in a molecule is typically
very large, fragments cannot be mapped to distinct bins of the vector and in practice,
hashing algorithms are used to limit the size of the vector, typically to 1000 or 2000 el-
ements. The hashing process maps each fragment to several bins of the vector, thereby
inducing a phenomenon of collisions, or ”clashes”, in the fingerprint. These two repre-
sentations are very popular in chemoinformatics and are illustrated in Figures 1.3 and
1.4. Among the advantages offered by the structural keys over the hashed fingerprint
representation is the expressiveness of the features, the interpretability retained in the
representation, because of the one-to-one correspondence between the bins of the vec-
tor and the structural features, and the possibility to consider the frequency of the
features, which is made impossible in hashed fingerprints by the use of hashing algo-
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rithms. On the other hand, hashed fingerprints consider a much larger set of features
to represent the molecules and are easier to implement because linear fragments are
particularly simple to detect. Moreover, whereas the fingerprint representation is uni-
versal, choosing the features to be included in the structural keys representation may
be challenging in practice. While chemical intuition can be helpful for that purpose
(Xue et al., 2001b), this task is more generally related to the problem of graph mining
that consists in the automatic identification of interesting structural features within a
set of graphs. For chemical applications, such interesting patterns are typically defined
as non correlated structures frequently appearing in active compounds, and rarely in
inactive compounds (Deshpande et al., 2005; Helma et al., 2004; Inokuchi et al., 2003).
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Figure 1.3: Illustration of the structural keys representation. The molecule is repre-
sented by a vector indexed by different structural keys

3D / geometrical descriptors

3D descriptors are derived from the 3D representation(s) of the molecules. The first
class of three dimensional descriptors requires a preliminary step of molecular align-
ment, consisting in placing the molecules in a common orientation in the 3D space
through operations of rotations and translations. The quality of the alignment is
quantified by a scoring function, and the molecules are said to be aligned when it
is maximized. Typical score functions consider the number of identical atoms super-
imposed under a skeleton representation (Thimm et al., 2004), or the overlap of the
electron clouds surrounding the molecules (Bultinck et al., 2003). In order to han-
dle conformational analysis, the alignment can be flexible, in which case additional
degrees of freedom are introduced to handle rotational bonds, or rigid and based on
the optimal alignment of pairs of multi-conformers. Aligning molecules can be a quite
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Figure 1.4: Illustration of the hashed fingerprint representation. The molecule is
represented by a large set of linear fragments (just a few are represented here), each of
them indexing several bits of the vector (3 here), thereby introducing a phenomenon
of collision.

complex process, and we refer to Lemmen and Lengauer (2000) for a review of the
existing techniques. Once the molecules are aligned, 3D descriptors can for instance
be defined by sampling molecular surfaces according to rays emanating from the center
of mass of the aligned molecules (Dietterich et al., 1997; Perry and van Geerestein,
1992), or, in the Comparative Molecular Field Analysis (CoMFA) methodology, by
measuring the interaction between the molecules and an atomic probe (e.g., a charged
or lipophilic atom) at each point of a discrete box enclosing the molecules (Kubinyi,
2003).

An opposite approach consists in extracting descriptors independent of the molec-
ular orientation. Apart from global shape descriptors, such as the Van der Waals
volume of the molecule or molecular surfaces areas, most alignment independent de-
scriptors are based on distances between atoms. For example, an early study proposed
to characterize a molecule by its matrix of inter-atomic distances (Pepperrell and Wil-
lett, 1991). While the authors propose several methods to compare such matrices,
this approach is not convenient because it does not lead to a fixed size representation
of the molecules. Standard vectorial representations can be derived by considering
pairs of atoms of the molecule. Topological autocorrelation vectors can for instance
be extended to 3D autocorrelation vectors, computing the autocorrelation of atomic
properties from pairs of atoms within a specified Euclidean distance range, instead
of a given topological distance on the molecular graph (Wagener et al., 1995). Other
representations are based on counting the number of times pairs of atoms of par-
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ticular types are found within predefined distance ranges in the 3D structure of the
molecule (Carhart et al., 1985; Chen et al., 1998; Swamidass et al., 2005). Consider-
ing molecular features based on triplets or larger sets of atoms leads to the notion of
pharmacophore. A pharmacophore is usually defined as a three-dimensional arrange-
ment of atoms - or groups of atoms - responsible for the biological activity of a drug
molecule (Güner, 2000). Typical pharmacophoric features of interest are atoms hav-
ing particular properties (e.g., positive and negative charges or high hydrophobicity),
hydrogen donors and acceptors and aromatic rings centroids (Pickett et al., 1996).
In this context, pharmacophore fingerprints were proposed as the three-dimensional
counterpart of molecular fragment fingerprints. Pharmacophore fingerprints represent
a molecule by a bitstring encoding its pharmacophoric content, usually defined as the
exhaustive list of triplets of pharmacophoric features found within a set of predefined
distances ranges in its 3D structure (McGregor and Muskal, 1999; Brown and Martin,
1996; Matter and Pötter, 1999), although extensions to four-point pharmacophores
exist (Mason et al., 1999). Strictly speaking, pharmacophore fingerprints therefore en-
code putative pharmacophores of the molecules, and because the number of potential
pharmacophores can be very large, they are usually hashed (Brown and Martin, 1996)
or compressed (Abrahamian et al., 2003; Saeh et al., 2005).

A vast amount of descriptors has therefore been proposed in the literature. The
above presentation if far from being exhaustive, and we refer interested readers to
the textbooks Gasteiger and Engel (2003) and Leach and Gillet (2003) for a detailed
presentation. Choosing ”good” descriptors for the task to be performed remains nev-
ertheless an open question. For instance, even though the molecular mechanisms re-
sponsible for the binding of a ligand to a target are known to strongly depend on their
3D complementarity, different studies account for the superiority of 2D fingerprints
over pharmacophore fingerprints in this context (Matter and Pötter, 1999; Brown and
Martin, 1996, 1997; Xue et al., 2001b). This observation suggests that 2D fingerprints
encode to some extent three-dimensional information (Brown and Martin, 1997), and
in many cases, they actually constitute the ”gold-standard” representation of chemical
structures.

1.2.2 Assessing molecular similarity

The notion of similarity plays an important role in chemoinformatics because of a
central paradigm, known as the similarity principle, stating that molecules of similar
structure are likely to exhibit similar biological properties (Johnson and Maggiora,
1990). This principle by itself justifies the methods involving clustering, partitioning
and ranking algorithms evoked in Section 1.1.3, and for this reason, the problem of
assessing the similarity between molecular structures has been drawing considerable
attention in chemoinformatics.

A first class of algorithms considers directly the molecular structures. The similar-
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ity between a pair of molecular graphs (2D) can for instance be defined from the ratio
between their sizes and the size of their maximal common subgraph (MCS)(Bunke
and Shearer, 1998). This approach can be extended to the 3D case by considering the
largest set of identical atoms with matching interatomic distances (up to a given res-
olution) (Pepperrell and Willett, 1991). Measures of similarity between 3D structures
can be straightforward obtained by their alignment scores (Thimm et al., 2004; Bult-
inck et al., 2003; Arakawa et al., 2003). Alternatively, the similarity between aligned
molecules can be assessed using the CoMFA methodology, from the comparison of
molecular fields by the Carbó similarity index (Carbó et al., 1980), defined for the pair
of molecules (A,B) as

RAB =

∫ ∫ ∫

PA(x, y, z)PB(x, y, z)dxdydz

(
∫ ∫ ∫

P 2
A(x, y, z)dxdydz)1/2(

∫ ∫ ∫

P 2
B(x, y, z)dxdydz)1/2

,

where PA (resp. PB) is the property measured by CoMFA (e.g., electron density,
charge) for the molecule A (resp. B), and the summation is over the elements of the
grid surrounding the molecules in the 3D space. In a related approach, molecular
shapes can be compared according to the following similarity index

SAB =
N

(TATB)1/2
,

where TA (resp. TB) is the number of points of the grid falling inside the Van der
Waals volume of the molecule A (resp. B), and N is the number of points falling
inside the Van der Waals volume of both molecules (Good and Richards, 1993). Note
that this index corresponds to the Carbó similarity index for binary properties PA and
PB being one at a grid point inside the Van der Waals volume of the molecules A
and B respectively, and zero otherwise. However, because searching maximal common
subgraphs and aligning molecules are computationally intensive processes, this type
of approach suffers from its complexity, and the mainstream approach is to define a
similarity measure from the comparison of molecular descriptors.

Because of the great diversity of molecular descriptors, numerous methods were
proposed to quantify molecular similarity, based for instance on connectivity indices
(Basak et al., 1988), pairs or triplets of atoms in the 2D and 3D representations of
molecules (Willett, 1998), matrices of interatomic distances and optimal atom map-
ping (Pepperrell and Willett, 1991), or autocorrelation vectors (Bauknecht et al., 1996).
Because they bear little information about the molecular structures, global physico-
chemical properties are usually of limited help to quantify the structural similarity of
molecules. The most widely used approach to quantify molecular similarity consists
in counting the number of shared substructural features. Several association coeffi-
cients have been defined for that purpose. They are basically based on a dot-product
between molecular fingerprints, and mainly differ in the way to normalize the finger-
prints overlap (see Willett (1998) for a review). Among these coefficients, the Tanimoto
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coefficient, defined for the pair of fingerprints (A,B) as

TAB =
A>B

A>A+B>B − A>B
,

has emerged as a standard similarity measure (Salim et al., 2003). This coefficient
lies in the (0, 1) range and can be seen as the ratio between the intersection of the
fingerprints and their union. Nevertheless, several studies have identified several limits
of the Tanimoto coefficient. First, it does not seem to be well adapted to assess the
similarity between pharmacophore fingerprints, most probably because of the process
of binning inter-atomic distances, which can cause close distances to fall in distinct bins
(Matter and Pötter, 1999). Moreover, while it is efficient to detect strong similarity
(TAB > 0.8) and dissimilarity (TAB < 0.2), the values of the Tanimoto coefficient must
be subject to caution in the intermediate (0.2, 0.8) range (Flower, 1998). While several
attempts have been done to address these issues, with for instance the introduction
of fuzzy pharmacophore fingerprints (Horvath and Jeandenans, 2003) and fingerprint
scaling (Xue et al., 2001a), efficiently assessing molecular similarity is still an open
question in chemoinformatics.

1.2.3 Modeling Structure-Activity Relationship

In this section, we consider the task of building a model correlating the biological
activity of a molecule with its structure from a pool of compounds of known activity.
This model can subsequently be used to predict the activity of unseen compounds in
virtual screening applications. From now on, we employ the term activity in a broad
sense to refer to a particular biological property the molecules exhibit, such as their
ability to bind to a particular biological target, their toxicity, or pharmacokinetics
properties. Decades of research in the fields of statistics and machine learning have
provided a profusion of methods for that purpose. Their detailed presentation is far
beyond the scope of this section, and we invite interested readers to refer to the classical
textbooks Duda et al. (2001) and Hastie et al. (2001) for a thorough introduction. In
this section we just give general methodological and historical considerations about
their application in chemoinformatics.

Methodological considerations

Models can be grouped into two main categories depending on the nature of the prop-
erty to be predicted. Models predicting quantitative properties, such as for instance
the degree of binding to a target, are known as regression models. On the other hand,
classification models predict qualitative properties. In SAR analysis, most of the prop-
erties considered are in essence quantitative, but the prediction problem is often cast
into the binary classification framework by the introduction of a threshold above which
the molecules are said to be globally active, and under which globally inactive. In the
following, the term classification implicitly stands for binary classification.
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In order to build the model, the pool of molecules with known activity is usually
split into a training set and a test set. The training set is used to learn the model. The
learning problem consists in constructing a model that is able to predict the biological
property on the molecules of the training set, without over-learning it. This overfitting
phenomenon can for instance be controlled using cross-validation techniques, that
quantify the ability of the model to predict a subset of the training set that was left
out during the learning phase. The test set is used to evaluate the generalization of the
learned model, corresponding to its ability to make correct prediction on a set of unseen
molecules. Different criteria can be used for this evaluation. In regression, it is typically
quantified by the correlation between the predicted and the true activity values. In the
classification framework, a standard criterion is the accuracy of the classifier, expressed
as the fraction of correctly classified compounds. However, if one of the two classes is
over-represented in the training set, and/or the cost of misclassification are different, it
might be safer to consider the true and false positive and negative rates of classification.
The true positive (resp. negative) rate account for the fraction of compounds of the
positive (resp. negative) class that are correctly predicted, and the false positive (resp.
negative) rate accounts for the fraction of compounds of the negative (resp. positive)
class that are misclassified. In virtual screening applications for instance, where we
typically do not want to misclassify a potentially active compound, models with low
false negative rates are favored, even it they come at the expense of an increased false
positive rate.

Because they usually require a limited set of uncorrelated variables as input, ap-
plying these models to chemoinformatics requires to summarize the information about
the molecules into a limited set of features, which may not a trivial task due to the vast
amount of molecular descriptors. A popular way to address this problem in chemoin-
formatics is to rely on principal component analysis (PCA) or partial least squares
(PLS), that define a limited set of uncorrelated variables from linear combinations of
the initial pool of features, in a way to account for most of their informative content.
The difference between the two methods stems from the fact that PCA is based on the
values of the features only, while PLS considers in addition their correlation with the
property to be predicted. Alternatively, feature selection methods can be used to iden-
tify among an initial pool of features a subset of features relevant with the property to
be predicted. Because molecular descriptors are sometimes costly to define, a potential
advantage of feature selection methods over PCA- and PLS-based approaches based is
the fact that they reduce the number of descriptors to be computed for the prediction
of new compounds.

Choosing a model among the profusion of existing models is related to the final goal
of the study, and while complex models can for instance have a great predictive ability,
this often comes in detriment of their interpretability. We now introduce different
methods that have been applied to model SAR.
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Trends in modeling SAR

The first SAR model was developed in 1964 by Hansch and coworkers who applied
a multiple linear regression (MLR) analysis to correlate the biological activity of a
molecule with a pair of descriptors related to its electronic structure and hydropho-
bicity (Hansch and Fujita, 1964). MLR models are still widely applied to model SAR.
PCA or PLS are commonly used as inputs, in the so-called PC-or PLS- regression
models (Saxena and Prathipati, 2003). This is in particular the case in the CoMFA
methodology, where PLS regression is the standard model to predict the biological ac-
tivity of a molecule from the vast amount of grid points sampling the molecular fields
(Kubinyi, 2003). Moreover, genetic algorithms have been introduced to perform fea-
ture selection as an alternative to standard forward selection or backward elimination
approaches (Rogers and Hopfinger, 1994). Related linear approaches can be applied
to the classification framework with discriminant analysis algorithms (Martin et al.,
1974).

However, because this class of model is limited to encode linear relationships, they
can be too restrictive to efficiently predict biological properties. While the models can
be enriched with the application of nonlinear transformations of the input variables
(Hansch et al., 1968), SAR analysis greatly benefited from the development of nonlinear
methods, and in particular artificial neural networks (ANN). Early applications of
back-propagation ANN accounted for their predictive superiority over standard linear
regression techniques (e.g., Aoyama et al., 1990; Andrea and Kalayeh, 1991; Egolf
and Jurs, 1993). Many subsequent studies have demonstrated the strength of ANN
to predict biological properties, and they are now a standard tool to model SAR
(Devillers, 1996; Zupan and Gasteiger, 1999; Schneider and Wrede, 1998).

Despite their predictive efficiency, a major criticism to ANN is their lack of in-
terpretability, which can be of great importance in chemistry in order to understand
the biological mechanisms responsible for the activity. An alternative class of models
builds a classifier expressed as a set of rules relating the molecular structure and the
biological activity. Such models have been derived for instance using decision trees
algorithms (A-Razzak and Glen, 1992; Hawkins et al., 1997) or methods from the field
of inductive logic programming (King et al., 1992, 1996), where they provided valuable
knowledge about structural features responsible for the activity of molecules.

From the practical viewpoint, another criticism that can be made to ANN is the
fact that they require some expertise, concerning for instance the choice of an ar-
chitecture, in order to be knowledgeably deployed. Moreover, they are known to be
prone to overfitting and are hard to reproduce, because of their random initialization
and possible convergence to local minima (Manallack and Livingstone, 1999; Burbidge
et al., 2001). These theoretical issues are to some extent addressed by the support
vector machine (SVM) algorithm, known in particular to avoid the problem of local
minima, to prevent overfitting, and to offer a better control of the generalization error
(Vapnik, 1998). Moreover, although its good parametrization remains a crucial point,
this algorithm requires a less amount of expertise to be deployed. The introduction
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of SVM in SAR analysis was pioneered by Burbidge and co-workers (Burbidge et al.,
2001). In this study, the SVM algorithm outperforms several ANN architectures for a
particular classification task, related to the ability of molecules to inhibit a biological
target. Over the last few years, SVM was shown to be a powerful tool for SAR analy-
sis, often outperforming ANN in classification and regression frameworks. We review
several applications of SVM to SAR analysis in Section 1.4, but before that, we give
in the next section an introduction to the SVM algorithm.

1.3 Support Vector Machines and kernel functions

The support vector machine algorithm was initially introduced in 1992 by Vapnik
and co-workers in the binary classification framework (Boser et al., 1992; Vapnik,
1998). Over the last decade this method has been gaining considerable attention in
the machine learning community, which led to the emergence of a whole family of
statistical learning algorithm called kernel methods (Shawe-Taylor and Cristianini,
2004; Schölkopf and Smola, 2002). SVM has been successfully in many real world
applications, including, for instance, optical character recognition (Schölkopf et al.,
1995), text-mining (Joachims, 2002) and bioinformatics (Schölkopf et al., 2004), often
outperforming state-of-the-art approaches. We start this section by a brief introduction
to SVM in the binary classification framework, and, in a second step, we highlight the
particular role played by kernel functions in the learning algorithm.

1.3.1 SVM for binary classification

In its simplest form SVM is an algorithm to learn a binary classification rule from a
set of labeled examples. More formally, suppose one is given a set of examples with a
binary label attached to each example, that is, a set S = {(x1, y1), . . . , (x`, y`)} where
(xi, yi) ∈ X × {−1,+1} for i = 1, . . . , `. Here X is an dot product space (e.g., R

d),
equipped with dot product 〈·, ·〉, that represents the space of data to be analyzed,
typically molecules represented by d-dimensional fingerprints, and the labels +1 and
−1 are meant to represent two classes of objects, such as inhibitors or non-inhibitors
of a target of interest. The purpose of SVM is to learn from S a classification function
f : X → {−1,+1} that can be used to predict the class of new unlabeled examples
x as f(x). The classifier output by SVM is based on the sign of a linear function :
f(x) = sign(〈w, x〉+b), for some (w, b) ∈ X ×R defined below. Geometrically, a couple
(w, b) ∈ X × R defines a hyperplane Hw,b = {x ∈ X : 〈w, x〉 + b = 0} that separates
the input space X into two half-spaces, and the prediction of the class of a new point
depends on the position of the point on the one or on the other side of the hyperplane.

SVM in the separable case

When the training set is linearly separable, i.e., when a hyperplane exists such that
the positive and negative examples lie on distinct sides of the hyperplane, the simplest
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flavor of SVM, called hard-margin SVM, chooses among the infinity of separating
hyperplanes the one with the largest distance to the closest data point from S. This
distance is known as the margin of the hyperplane, usually noted γ, and this particular
hyperplane defines the maximum margin classifier, as illustrated in Figure 1.5. The
choice of this particular hyperplane intuitively makes sense, but is also well motivated
theoretically. SVM learns a classification function that minimizes the empirical risk,
while being as regular as possible, and for this reason, it offers an optimal control of
the generalization error (Vapnik, 1998).

<w,x> + b < 0
<w,x> + b = 0

γ

γ

w

<w,x> + b > 0

Figure 1.5: SVM finds the hyperplane 〈w, x〉 + b = 0 that separates positive (white
circles) and negative (black circles) examples with a maximum margin γ. Here, a new
example represented by the white (resp. black) square is predicted as positive (resp.
negative).

The distance from the point (xi, yi) ∈ S to the hyperplane Hw,b = {x ∈ X :
〈w, x〉+ b = 0} is given by |(〈w, xi〉+ b)|/||w||. If Hw,b is a separating hyperplane, this
distance is equal to yi(〈w, xi〉 + b)/||w|| and the corresponding margin is given by

γ = min
i=1,...,l

yi(〈w, xi〉 + b)/||w||, (xi, yi) ∈ S. (1.1)

Because hyperplanes are defined up to a scaling constant4, we can without loss of
generality add the following constraint on the definition of Hw,b:

min
i=1,...,l

yi(〈w, xi〉 + b) = 1, (xi, yi) ∈ S. (1.2)

This gives a canonical definition to hyperplanes with respect to S, and it follows from
(1.1) that the margin of a separating hyperplane Hw,b is given by 1

||w||
.

4Indeed, because 〈w, x〉 + b = 0 ⇔ 〈αw, x〉 + αb = 0 for α ∈ R, Hw,b and Hαw,αb correspond to
the same hyperplane.
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The SVM algorithm looks for the canonical separating hyperplane Hw∗,b∗ having
the maximum margin, which can be formulated as the following optimization problem:

(w∗, b∗) = argmin
w∈X ,
b∈R

1

2
||w||2 (1.3)

s.t. yi(〈w, xi〉 + b) ≥ 1, i = 1, . . . , l. (1.4)

Because the objective function (1.3) and the inequality constraints (1.4) are convex,
this problem belongs to the class of convex problems. Moreover, because the objective
function is strictly convex, this problem admits a unique solution (Boyd and Vanden-
berghe, 2004). Optimization problems can be solved in practice within the framework
of Lagrangian duality. The Lagrangian associated to the optimization problem defined
by (1.3) and (1.4), denoted in this context as the primal problem, is given by

L(w, b,α) =
1

2
||w||2 −

l
∑

i=1

αi

(

yi(〈w, xi〉 + b) − 1
)

, (1.5)

where the coefficients αi ≥ 0 are known as the Lagrange multipliers associated to the
constraints yi(〈w, xi〉+b) ≥ 1, and we let α ∈ R

l be the vector of Lagrange multipliers.
The unique solution of this optimization problem is given at the saddle point of the
Lagrangian, corresponding to a minimum of L(w, b,α) with respect to (w, b), and a
maximum with respect to α. We first minimize the Lagrangian with respect to w
and b for a fixed α. This is done by setting the partial derivatives ∂

∂w
L(w, b,α) and

∂
∂b
L(w, b,α) to zero, leading respectively to

w =

l
∑

i=1

αiyixi (1.6)

and
l
∑

i=1

αiyi = 0. (1.7)

Substituting (1.6) and (1.7) into the Lagrangian (1.5), the original problem therefore
becomes equivalent to the following dual problem

α∗ = argmax α∈Rl

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj〈xi, xj〉 (1.8)

s.t. αi ≥ 0, i = 1, . . . , l (1.9)
l
∑

i=1

αiyi = 0. (1.10)

This problem is a quadratic program that can be solved efficiently in practice using a
dedicated algorithm, known as Sequential Minimal Optimization (SMO) (Platt, 1999),



1.3. SUPPORT VECTOR MACHINES AND KERNEL FUNCTIONS 23

taking advantage of the constraints (1.9) and (1.10).

When the optimum α∗ is met, the decision function f(x) = sign(〈w∗, x〉+b∗) writes
as

f(x) = sign(

l
∑

i=1

α∗
i yi〈x, xi〉 + b∗). (1.11)

The offset b∗ can be obtained by the fact that at the optimum, the points verify the
following condition, known as the Karush-Kuhn-Tucker condition:

α∗
i

(

yi(〈w∗, xi〉 + b∗) − 1
)

= 0, i = 1, . . . , l.

A striking consequence of this condition is that, from (1.4), non-zero Lagrange mul-
tipliers α∗

i can only be associated to points (xi, yi) for which yi(〈w∗, xi〉 + b∗) = 1.
These points lie on the margin of the hyperplane and, importantly, they are the only
ones to enter its definition. For this reason, they are called the Support Vectors of the
classifier. The offset b∗ can therefore be obtained from a support vector (xi, yi) as

b∗ =
yi

〈w∗, xi〉
=

yi
∑l

j=1 α
∗
j〈xj, xi〉

,

but, in practice, it is better to average this quantity over the whole set of support
vectors (Burges, 1998).

We note finally that by varying the value of the offset, we can tune the false
positive and negative rates of the SVM classifier. For instance, considering an offset
b < b∗ will have the effect of translating the decision function towards the negative
side of the hyperplane, thereby favoring the classification of test data as positive in
the test phase. While this would have the effect of increasing the false positive rate,
that is, the classification as positive of points belonging to the negative class, it is
also likely to reduce the false negative rate, which can be important in applications
such as virtual screening where we typically do not want to miss a potentially active
compound. Actually, gradually increasing the offset from −∞ to +∞ defines a generic
SVM classifier based on the vector w∗, from which we can draw the evolution of the
true positive versus the false negative rates in a curve known as the Receiver Operating
Characteristic (ROC) curve. Not only can the ROC curve help choosing the value
of the offset achieving the optimal trade-off between the true positive and the false
positive rates, but the area under this curve defines an indicator of the performance of
this generic SVM classifier, known as the AUC, that is considered to be more general
than the accuracy of the single SVM classifier defined by b∗, and is gaining an increasing
popularity in the machine learning community (Fawcett, 2003). The AUC of an ideal
classifier would be 1, meaning that the positive data would be the first to be recognized
as positive according to their scores, while for a random classifier it would be 0.5.
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SVM in the non separable case

The above algorithm applies to separable data, but in the general case, a linear hy-
perplane separating the data may not exist. Non separable datasets can be considered
in practice by the introduction of slack-variables ξi ≥ 0 for each point (xi, yi) ∈ S in
order to relax the separability constraints (1.4) of the primal problem by

yi(〈w, xi〉) + b ≥ 1 − ξi.

The term ξi accounts for the error made in the classification of the point (xi, yi): if
ξi = 0, the point (xi, yi) is correctly classified and lies outside the margin, if 0 < ξi ≤ 1
it is still correctly classified but lies within the margin, and if ξi > 1, the point is
misclassified. This is illustrated in Figure 1.6. Note that the margin of the hyperplane
is defined from the points (xi, yi) ∈ S for which ξi = 0.

<w,x> + b = 0

i > 1

ξi < 10 <
ξi =  0

ξ

Figure 1.6: Illustration of the introduction of slack-variables. ξi > 1 corresponds to
misclassified points, 0 < ξi < 1 corresponds to points correctly classified within the
margin, and ξi = 0 corresponds to points correctly classified outside the margin.

The sum of the slack variable therefore accounts for the amount of separability
constraints violation on the training set and must therefore be controlled during the
learning process. This is done in practice by adding this quantity to the objective
function of the SVM optimization problem, which becomes

(w∗, b∗, ξ∗) = argmin w∈X ,
b∈R,
ξ∈R

l

1

2
||w||2 + C

l
∑

i=1

ξi (1.12)

s.t. yi(〈w, xi〉) + b ≥ 1 − ξi, i = 1, . . . , l (1.13)

ξi ≥ 0, i = 1, . . . , l. (1.14)
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The constant C introduced in the objective function (1.12) is meant to introduce a
trade-off between the maximization of the margin, expressed by the term 1

2
||w||2, and

the separation of the training set, expressed by the sum of the slack variables. Decreas-
ing C has the effect of tolerating a larger number of misclassifications on the training
set for the profit of an increased margin. This formulation is known as the soft-margin
SVM, in opposition to the hard-margin formulation that tolerates no misclassifications
in a separable case. Note that the hard-margin formulation is retrieved if C = +∞,
and even though the training set happens to be linearly separable, this soft-margin
formulation prevents overfitting to noise or outliers.

Although we skip details, the soft margin hyperplane defined by (1.12), (1.13) and
(1.14) is obtained by a slight modification of the dual problem derived in the separable
case, resuming in turning the constraints αi ≥ 0 of equation (1.9) into 0 ≤ αi ≤ C, for
i = 1, . . . , l. Finally, note that several soft-margin formulations have been proposed
depending on the way to penalize the violation of the separability constraints. For
instance an alternative formulation considers the squared values of the slack-variables
in (1.14) (Shawe-Taylor and Cristianini, 2004).

Non-linear SVM

Nevertheless, when dealing with nonlinearly separable problems, such as the one de-
picted on Figure 1.7 (left), the set of linear classifiers may not be rich enough to provide
a good classification function, no matter what the values of the parameters w ∈ X ,
b ∈ R, and possibly ξ ∈ R

l, are. SVMs can be straightforward generalized to the
nonlinear case by applying a linear approach to the transformed data φ(x1), . . . , φ(x`)
rather than the original data, where φ is a nonlinear embedding from the input space
X to a feature space H usually, but not necessarily, of higher dimensionality, equipped
with dot product 〈·, ·〉H. Replacing the dot products 〈xi, xj〉 by 〈φ(xi), φ(xj)〉H in
(1.8) computes a linear hyperplane in the feature space, that, according to (1.11),
corresponds to the following nonlinear separating function f in the input space

f(x) = sign

(

∑̀

i=1

αi〈φ(xi), φ(x)〉H + b

)

. (1.15)

A classical example is given in Figure 1.7, where the natural ellipsoidal separating
function in the input space X = R

2 (left) corresponds to an hyperplane in the feature
space H = R

3 (right) defined by the mapping

φ : R
2 → R

3

(x1, x2) 7→ (z1, z2, z3) = (x2
1, x

2
2,
√

2x1x2) (1.16)

This is due to the fact that ellipses can be written as linear equations of z1 and z2,
which also explains that the corresponding hyperplane is parallel to z3.
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x2

x1 z 3
z 1

z 2

φ

Figure 1.7: Illustration of non-linear SVMs, where the mapping φ : R
2 → R

3 is defined
by φ([x1, x2]) = [z1, z2, z3], where z1 = x2

1, z2 = x2
2 and z3 =

√
2x1x2.

1.3.2 Kernel functions

An important remark is that in the dual formulation of SVM, the data are only present
through dot products: pairwise dot products between the training points during the
learning phase (1.8), and dot products between a new data and the training points dur-
ing the test phase (1.11). This means that instead of explicitly knowing φ(x) for any
x ∈ X , it suffices to be able to compute dot products 〈φ(x), φ(x′)〉H for any x, x′ ∈ X .
A striking point is that in some cases, it is more efficient to compute directly the dot
product without explicitly computing the mapping φ. If we consider for instance the
mapping φ given in equation (1.16), it is easy to see that, for (x, y) ∈ X , the dot
product 〈φ(x), φ(y)〉H is given by 〈x, y〉2, which almost reduces the cost of evaluating
the dot product in H by a factor three5.

A function K : X × X → R computing directly the dot product in the feature
space is known as a kernel function. Standard kernel functions for vectorial input
spaces X = R

n include:

• the polynomial kernel K(x, y) = (〈x, y〉 + R)d. This kernel implicitly maps a
point x = [x1, . . . , xn] to a feature space indexed by all the products of monomi-
als xi1

1 x
i2
2 . . . x

in
n such that

∑n
j=1 ij ≤ d, and computes a dot product in this space

(Shawe-Taylor and Cristianini, 2004). Note that the polynomial kernel general-
izes the mapping of equation (1.16) associated to the kernel K(x, y) = 〈x, y〉2.

• the radial basis function (RBF) kernel K(x, y) = exp(− ||x−y||2

2σ2 ). This kernel
computes a dot product in a feature space of infinite dimensions. The resulting
decision function writes as a sum of Gaussian functions centered on the support
vectors. Note that the smaller σ, the more peaked the Gaussian functions, and,

5Indeed, computing explicitly 〈φ(x), φ(y)〉H requires 11 sum and product operations, while only 4
are needed to compute 〈x, y〉2.
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for a sufficiently small value of σ, this kernel can always perfectly separate the
training set (Shawe-Taylor and Cristianini, 2004).

These two kernels map nonlinearly the input data into high- (even infinite-) dimen-
sional feature spaces at almost no cost, and are known to be safe default choices for
SVMs. Note that the dot product in the input space X is known as the linear kernel.

SVM offer the possibility to consider such high-dimensional feature space for two
reasons. The first theoretical reason stems from the fact that the learning algorithm is
able to deal with high dimensionality by a heavy use of regularization (Vapnik, 1998).
The second practical reason is due to the fact that complex feature spaces can be
considered implicitly by the use of kernel functions. This latter mathematical trick,
which is common to the whole family of kernel methods (Shawe-Taylor and Cristianini,
2004; Schölkopf and Smola, 2002), is known as the kernel trick and is considerably
enriched by the following definition.

Definition 1 (Positive definite kernel). Let X be a nonempty space. Let K :
X × X → R be a symmetric function. K is said to be a positive definite kernel if and
only if, for all positive integer `, for all x1, . . . , x` ∈ X , the square ` × ` matrix K =
(K(xi, xj))1≤i,j≤` is positive semi-definite, that is, all its eigenvalues are nonnegative.

For a given set Sx = {x1, . . . , x`}, K is the Gram matrix of K with respect to Sx.
A fundamental property of positive definite kernels is the fact that each such kernel
can be represented as a dot product in some space. More precisely, it can be shown
(Aronszajn, 1950) that for any positive definite kernel function K, there exists a space
H, equipped with the dot product 〈·, ·〉H, and a mapping φ : X → H such that:

∀u, v ∈ X , K(u, v) = 〈φ(u), φ(v)〉H . (1.17)

The kernel trick consists in replacing all occurrences of 〈·, ·〉H by a positive definite
kernel K, which turns out to be equivalent to transforming the input patterns x1, . . . , x`

into the corresponding vectors φ(x1), . . . , φ(x`) ∈ H and to look for hyperplanes in H,
the striking point being that we do not even need to know explicitly the nature of the
mapping φ. Note from equation (1.8) that the knowledge of the Gram matrix suffices
to obtain the coefficients αi, and the decision function f of equation (1.15) is now given
for an input pattern x by:

f(x) = sign

(

∑̀

i=1

αiK(xi, x) + b

)

. (1.18)

Positive definite kernels are therefore the key ingredient of SVM and, more gen-
erally, of kernel methods. Because they correspond to a dot product in a particular
feature space, they can intuitively be seen as measures of similarity between the in-
put data. Actually, in some cases, it may be easier to directly compare objects than
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choosing an explicit representation, and as a consequence of the kernel trick, any
prior notion of similarity on the input space can be used as input to SVM provided
it verifies the positive definiteness condition. This allows in particular to generalize
SVM to non-vectorial spaces X provided a proper kernel function exists to assess the
similarity between patterns of the input space. For instance, SVMs have recently
been applied in the fields of bioinformatics, natural language processing and chemoin-
formatics, with the introduction of kernels for DNA sequences and proteins primary
structures (Schölkopf et al., 2004), parse trees (Collins and Duffy, 2001) and 2D and
3D structures of molecules (Kashima et al., 2004; Swamidass et al., 2005; Mahé et al.,
2006).

On the practical side, a noteworthy feature of support vector machines, and more
generally of kernel methods, is that, since ready-to-use libraries to derive separating
hyperplanes are available 6, the only requirement for them to be applied to a specific
problem is to derive a proper kernel.

1.4 Support Vector Machines for virtual screening

In this section, we present several applications of SVM to structure-activity relation-
ship and virtual screening. In a first step, we consider the mainstream vector-based
approach where the molecules are represented by a set of molecular descriptors. In
a second step, we present the alternative approach that consists in defining a kernel
function comparing directly the molecular structures, without the need of explicitly
extracting molecular descriptors.

1.4.1 SVM and molecular descriptors

Following the pioneer introduction of SVM for SAR by Burbidge et al. (2001), SVMs
have been increasingly used in SAR and virtual screening based on a great variety of
molecular descriptors, in order to solve various tasks that we now review7.

Prediction of inhibition activity

In their pioneer study, Burbidge et al. (2001) consider the task of predicting the ability
of pyrimidines molecules to inhibit the dihydrofolate reductase enzyme. The original
regression problem, involving the prediction of a quantitative measure of inhibition,
is cast to a binary classification problem, which consists in predicting if the molecule
A has a higher activity that the molecule B, for each pair (A,B) of molecules of the
data set. SVM is shown to outperform decision trees, three artificial neural networks

6The website http://www.kernel-machines.org/ gathers many resources related to SVM and
kernel methods for instance.

7Note however that this review is by no means exhaustive.
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and a radial basis function network for this purpose. Saeh et al. (2005) and Yao et al.
(2004) use SVM for the prediction of GPCR and COX-2 inhibitors, using respectively
pharmacophore fingeprints and a combination of constitutional, topological and elec-
trostatic descriptors. The reported models are accurate, outperforming multiple linear
regression and radial basis function networks in the latter case. Byvatov and Schneider
(2004) and Liu (2004) consider the problem of feature selection in several tasks involv-
ing the detection of kinase, thrombin and factor Xa inhibitors. The main conclusion is
that SVM performs better when all features are used, but in Byvatov and Schneider
(2004) the number of features could be reduced by a factor 10 with only a slight de-
crease in accuracy of the model, which is beneficial in terms of computation times in
the testing phase. Wilton et al. (2003) and Jorissen and Gilson (2005) evaluate SVM
for ranking molecules according to their biological activity. In both studies, molecules
are simply ranked according to their classification score. While Wilton et al. (2003)
suggest that SVM is less efficient than simple methods based on molecular fingerprints
and the Tanimoto coefficient, Jorissen and Gilson (2005) show that SVM can compare
favorably to these approaches if the parameters of the model are chosen to optimize
a novel ranking-based criterion. Finally, SVM have been used in particular machine
learning frameworks. Weston et al. (2003) consider transductive SVM associated to
an heuristic feature selection scheme to address a classification problem strongly un-
balanced, and in high-dimensions, consisting in the prediction of thrombin inhibitors.
Using the same dataset, Warmuth et al. (2003) use SVM in an active learning frame-
work, with a view to reproducing a real case application where the molecules to be
screened have to be selected iteratively.

Drug/non-drug classification

In a problem consisting in the discrimination of known drugs and random molecules,
SVM is shown to be at least comparable, and often better, than models based on ANN,
linear discriminants, bagged decision trees and bagged k-nearest neighbors (Byvatov
et al., 2003; Müller et al., 2005). In Takaoka et al. (2003), SVM and artificial neural
networks show comparable results for the identification of drug-like compounds, ac-
cording to a particular criterion defined by chemists’intuition and ease of synthesis,.
Finally, Zernov et al. (2003) use SVM to predict drug-likeliness and agrochemical-
likeliness for large sets of molecules (30 000 and 11 000), and report better results
than artificial neural networks.

Prediction of pharmacokinetics and toxicity properties

In Sorich et al. (2003), SVM is used in a classification framework to discriminate be-
tween substrates or non-substrates of a family of enzymes involved in the metabolism
of drugs, and is shown to outperform, in general, partial least squares discriminant
analysis and Bayesian regularized artificial neural networks. Together with a recursive
feature elimination scheme (Guyon et al., 2002), SVM is applied to a similar prob-
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lem involving the identification of substrates of a family of proteins able to transport
molecules across the plasma membrane, which constitutes for instance a major cause
of failures of cancer chemotherapy (Xue et al., 2004e), and to predict pharmacoki-
netic and toxicological properties of molecules (Xue et al., 2004d). Feature selection
reduces the number of features used to represent the molecules, which can be help-
ful to identify features responsible for toxicity and poor pharmacokinetics properties
(Xue et al., 2004d), and the results obtained by SVM are slightly better than those
obtained with k-nearest neighbors, decision trees and probabilistic neural networks
(Xue et al., 2004e). In Yap and Chen (2005), SVM are involved in the identification of
inhibitors and substrates of three enzymes known to have an important effect on drug
metabolism. In this study, molecules are classified according to consensus classifica-
tion schemes, based on several SVMs trained on different sets of descriptors selected
by a genetic algorithm. This consensus approach leads to results comparable with
those of earlier studies, and is shown to be better than a single SVM classification
system. Alternatively, SVM regression has been used to predict the toxicity of phenol
molecules (Yao et al., 2004), the binding affinity to human serum albumin, a protein
known to have an important role in the distribution of drugs in the organism (Xue
et al., 2004c) and the aqueous solubility of molecules, which is a limiting factor to
the absorption of drugs (Lind and Maltseva, 2003). In these three studies, SVM is
systematically shown to outperform models based on multiple linear regression and/or
artificial neural networks.

Prediction of general molecular properties

Finally, SVM regression has been used to predict general molecular properties such as,
for instance, the capacity factor of peptides (Liu et al., 2004), the O-H bond dissoci-
ation energy of phenols (Xue et al., 2004b) and the heat capacity of molecules (Xue
et al., 2004a). In these studies, SVM is often shown to outperform multiple linear
regression models and several artificial neural networks.

In addition to these approaches based on standard molecular descriptors, SVM has
been used based on vectorial representations of molecules derived from graph mining
algorithms. Graph mining consists in the identification of interesting structural pat-
terns within a set of graphs. A molecule can then be represented by a vector indexed
by these identified patterns. This approach is therefore related to the structural keys
characterization of molecules introduced in Section 1.2.1, with the key feature that
the patterns relevant with the task to be performed are identified automatically. For
instance, in a binary classification framework, Kramer et al. (2002) and Helma et al.
(2004) automatically extract from molecular graphs a set of discriminative linear frag-
ments: linear molecular fragments appearing frequently in one class, but only rarely
in the other. Alternatively, Deshpande and Karypis (2002) propose to characterize
molecular graphs by general subgraphs occurring frequently in the data set. An im-
portant difference with the above approaches lies in the fact that, here, the frequency
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criterion is global, and is not balanced between high frequency in one class and low
frequency in the other. Because this approach is obviously likely to detect insignificant
subgraphs, in particular if the set of inactive compounds is larger than the set of active
compounds, the authors suggest to rely on subgraphs frequently occurring in the class
of active compounds only. This approach was recently extended to the 3D case in
Deshpande et al. (2005). In this study, 3D structures of molecules are characterized
by frequent geometrical subgraphs, defined as topological (2D) subgraphs mapped in
the 3D space by the introduction of atomic coordinates. Discovering frequent geomet-
rical subgraphs consists in the identification of frequent topological subgraphs, that
have a similar 3D structure. In practice, the tridimensional information is dealt by
the introduction of a global shape criterion characterizing geometrical subgraphs. Fre-
quent geometrical subgraphs then define as frequent topological subgraphs that have
the same shape criterion value, up to a given resolution. The conjunction of graph
mining approach with SVMs led to promising results. Indeed, the resulting models are
in general able to efficiently predict biological properties, and at the same time, using
a linear kernel, this formulation offers the possibility to identify structural features
responsible for activity (Helma et al., 2004; Deshpande et al., 2005).

1.4.2 SVM and kernel functions for molecules

Developing kernels for molecules is part of the larger thematic of kernel design for
structured data that do not have a natural vectorial representation, such as strings,
trees or graphs. This topic has been drawing considerable interest over the recent years
in the machine learning community, motivated by many real world applications in sev-
eral fields such as bioinformatics, natural language processing, or chemical informatics
among others. The mainstream approach to tackle this problem is a divide-to-conquer
approach consisting in deriving a kernel for structured objects from sub-kernels com-
paring their parts. A general framework was early proposed for this purpose with the
introduction of convolution kernels (Haussler, 1999). Convolution kernels rely on the
idea that a structured object x ∈ X can be decomposed into a d-tuple of substructures
(x1, . . . , xd) ∈ X1 × · · · × Xd. A string s can for instance be decomposed into a tuple
of d substrings by s = s1 ◦ s2 ◦ · · · ◦ sd, where ◦ denotes the string concatenation
operator. This notion of decomposition can be defined formally by a binary relation R
on X ×X1 × · · ·×Xd, R(x, ~x) being one if x can be decomposed into ~x = (x1, . . . , xd),
and zero otherwise. The set of possible decompositions of an object x is then defined
by R−1(x) = {~x : R(x, ~x) = 1}. The idea of the convolution kernel is to sum, over
the allowed decompositions of the objects to be compared, the product of sub-kernels
comparing pairs of elements of their decomposition. This can be interpreted as a
convolution operation, and the kernel introduced in Haussler (1999) writes as

K(x, y) =
∑

~x∈R−1(x)

∑

~y∈R−1(y)

D
∏

d=1

Kd(xd, yd) (1.19)
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In practice, this general formulation may require considerable work to make the convo-
lution kernel applicable to a particular problem. Several issues related in particular to
the number of allowed decompositions, the ease of detecting the substructures consid-
ered and the computational cost of the sub-kernels, are critical for the computability of
the kernel. For this reason, most kernels for structured data correspond to particular
convolution kernels, where the generality of the formulation was simplified for the sake
of computability.

An important example is that of spectral kernels. Spectral kernels consider the
frequency of occurrence of a predefined set of substructures S to characterize a struc-
tured object. In their simplest form, they write as standard dot products K(x, y) =
〈φ(x), φ(y)〉 where φ(x) is the vector counting the substructures in x, defined as
φ(x) =

(

φs(x)
)

s∈S
, where φs(x) is the number of times the substructure s appears

in x. If we let p(x) denote the set of parts of the object x, spectral kernels correspond
in the context of convolution kernels to a decomposition relation R(x, p(x)) of order
d = 1, being one if there exists a structure s ∈ S such that p(x) = s, and a binary
kernel between substructures KS(u, v) = 1(u = v), being one if the elements u and v
are identical. Spectral kernels can be written as a special case of convolution kernel
according to the following equation

K(x, y) =
∑

u∈R−1(x)

∑

v∈R−1(y)

1(u = v)

Spectral kernels have been developed for instance:

• in the context of strings, where the k-spectrum kernel is based on the count
of common substrings of length k (Leslie et al., 2002). Computing the kernel
therefore requires the extraction and matching of all contiguous substrings of
length k from the strings to be compared. Several refinements have been subse-
quently introduced in order to handle more flexible string characterizations, such
as tolerance to gaps in the detection of the substrings, and mismatches in their
comparison (Leslie et al., 2004).

• in the context of labeled trees (Collins and Duffy, 2001) based on the count of
common subtrees. This kernel implicitly maps trees to a feature space indexed by
the whole set of labeled trees defined by the tree labeling alphabet, and computes
a dot product in this space.

Despite the fact that these kernels map the objects to feature spaces of high dimension-
ality, they can be computed efficiently, using suffix tree algorithms in the former case
and dynamic programming in the latter case. The striking point is that even though
the feature space can be very large, the number of substructures to be be detected
depends on the size of the objects to be compared.
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In the context of convolution and spectral kernels, several kernels have been pro-
posed more recently to compare labeled graphs A labeled graph G is defined by a set
of vertices VG, a set of edges EG ⊂ VG ×VG connecting pairs of vertices, and a labeling
function l, that assigns a label taken from an alphabet A to vertices and edges. Graph
kernels find natural applications in chemoinformatics where molecular graphs repre-
senting covalent bonds between atoms are naturally represented as labeled graphs.
Following the spectral approach, one would therefore like to represent graphs by their
exhaustive list of subgraphs, and define a graph kernel from the count of common
subgraphs. However, because the number of subgraphs increases exponentially with
the size of the graphs, and their comparison involves to detect graph isomorphism,
this kernel cannot be computed in polynomial time (Gärtner et al., 2003). As a result,
pioneer graph kernels involve a restricted set of subgraphs and characterize graphs
simple linear subgraphs (Kashima et al., 2003; Gärtner, 2002). Put in the context of
convolution kernels, the corresponding decomposition relation writes as

R
(

G, (v0, . . . , vn)
)

= 1 if

{

vi ∈ VG, i = 0, . . . , n

(vi, vi+1) ∈ EG, i = 0, . . . , n− 1
, ∀n ∈ N

and this class of graph kernels can be written as

K(G,G′) =
∑

u∈R−1(G)

∑

u′∈R−1(G′)

KS(u, u′), (1.20)

where KS is a kernel between subgraphs. This class of kernels characterizes a graph
by an infinite number of substructures, and in practice, the subgraph kernels must be
down-weighted to ensure that their summation converges.

In the graph theory terminology, the set of allowed decompositions of the graph G,
R−1(G), corresponds to its set of walks. From now on, we adopt this terminology, and
we refer to the class of graph kernels defined by equation (1.20) as walk-based graph
kernels. We let W(G) be the set of walks of the graph G, defined formally as W(G) =
∪∞

n=0Wn(G), where Wn(G) = {(v0, . . . , vn) ∈ Vn+1
G : (vi, vi+1) ∈ EG, i = 0, . . . , n − 1}

is the set of walks of length n8. Moreover, we extend the graph labeling function to
label walks, a walk label being naturally defined as the concatenation of the labels of
the vertices and edges it is made of. Consequently, we rewrite equation (1.20) as

K(G,G′) =
∑

w∈W(G)

∑

w′∈W(G′)

KW(w,w′), (1.21)

where KW is a walk kernel, typically a string kernel assessing the similarity between
pairs of walks from their labels. We now review the different walk-based kernels that
have been introduced.

8Note that the length of a walk is defined as the number of edges it is made of.
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Kernels based on common walks

A first class of walk-based graph kernels involves the count of common walks and is
therefore related to the spectral formulation. Gärtner (2002) first introduced a label
pairs graph kernel based on the count of walks having the same starting and ending
label. The corresponding walk kernel is formally defined as

KW

(

(v0, . . . , vn), (v′0, . . . , v
′
m)
)

= λmλn1
(

l(v0) = l(v′0) ∧ (l(vn) = l(v′m)
)

,

where the parameters λi give weights to the walks depending on their length. The asso-
ciated feature space is indexed by pairs of vertex labels, and if we let Av = {l1, . . . , l|A|}
be the set of vertex labels, the label pairs kernel can be written as a standard dot prod-
uct:

K(G,G′) =

|Av |
∑

i=1

|Av |
∑

j=1

φli,lj(G)φli,lj(G
′),

where

φli,lj(G) =

+∞
∑

n=0

λn|{(v0, . . . , vn) ∈ Wn(G) : l(v0) = li ∧ l(vn) = lj}|.

Although we skip details, this kernel can be computed in polynomial times for well
chosen values of the parameters λi. In particular, choosing λi = γi for a sufficiently
small value of γ, or λi = βi/i!, leads respectively to the geometric and exponential
graph kernel. However, despite the fact that an infinite number of walks is considered
to represent the graphs, the dimensionality of the feature space associated to the ker-
nel is equal to |Av|2, which is likely to be too small to efficiently assess precise graph
similarity, in particular when the set of vertex labels is small. Moreover, while it might
be relevant to allow gaps in the comparison of walks, the fact that the kernel does not
take into account the information along the walks can be questioned.

In order to enrich the expressiveness of the feature space, Gärtner et al. (2003)
introduced a contiguous label sequences graph kernel. This kernel is based on the
count of globally identical walks, and the corresponding walk kernels writes as

KW(w,w′) = λ|w|1(l(w) = l(w′)),

where 1(l(w) = l(w′)) is one if the walks w and w′ are identically labeled, meaning
that they have the same length and identical sequences of vertex and edge labels, and
zero otherwise. The corresponding feature space has an infinite number of dimensions,
indexed by the set S of possible walk labels that can be obtained from the alphabet
A, and the kernel writes as a standard dot product:

K(G,G′) = 〈φ(G), φ(G′)〉,
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where

φ(G) =
(

φs(G)
)

s∈S
and φs(G) =

√

λ|s||{w ∈ W|s|(G) : l(w) = s}|.

This kernel can also be computed in polynomial times for well chosen values of the
parameters λi. The algorithm consists in merging the graphs G and G′ into their
product graph G×G′ , the striking point being that a bijection can be found between
W(G×G′) and the pairs of walks identically labeled taken from W(G) and W(G′). We
postpone the details of the computation to Chapter 2. Finally, note that this kernel
was further refined in order to handle mismatches in the comparison of walk labels
(Gärtner et al., 2003).

Because they are based on binary walk kernels, this first class of walk-based graph
kernels can be viewed as special cases of spectral kernels. However, because the number
of walks found in a graph can be infinite, in the case of a graph with cycles for instance,
the walk counts must be down-weighted by parameters λi, that typically decrease with
the length of the walks. It is worth noting that even though an infinity of features
is taken into account to represent the graphs, well chosen values of these parameters
lead to closed-form computations of the kernels.

Marginalized kernels

A related approach was proposed in Kashima et al. (2003) in the context of marginal-
ized kernels. This kernel is also based on the comparison of walks, but it differs from
the above walk-counts formulation in two aspects. First, walks are considered as ran-
dom walks and are associated to a probability of occurring in the graphs. Second, the
formulation adopted is more general in the sense that it allows to match differently
labeled walks. More precisely, following the general definition of equation (1.21), the
walk kernel KW writes as

KW(w,w′) = pG(w)pG′(w′)KL(w,w′), (1.22)

where pG is a probability distribution on W(G), and KL is a kernel between walk
labels. In Kashima et al. (2004), the kernel KL is defined as a product of kernels KLV

and KLE
, namely,

KL

(

(v0, . . . , vn), (v′0, . . . , v
′
m)
)

= 1(n = m)

×
n
∏

i=0

KLV

(

l(vi), l(v
′
i)
)

×
n−1
∏

i=0

KLE

(

l((vi, vi+1)), l(v
′
i, v

′
i+1)
)

,
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where the kernels KLV
and KLE

respectively compare pairs of vertex and edge labels.
Moreover, the probability distribution pG is defined as a first order Markov model,
that is,

pG((vo, . . . , vn)) = p(G)
s (v0)

n−1
∏

i=0

p
(G)
t (vi+1|vi),

where p
(G)
s and p

(G)
t are respectively initial and transition probabilities chosen such

that
∑

w∈W(G) pG(w) = 1. Note that because the kernel KL between walk labels
allows the matching of differently labeled walks, the marginalized kernel does not have
an explicit interpretation as a feature vector, in opposition to the above walk-counts
graph kernels. Nevertheless, because of the closure properties of the class of kernel
functions, the above construction is known to be valid as long as the basis kernels KLV

and KLE
are proper kernels.

However, in the absence of prior information on the similarity of vertex and edge
labels, a natural choice for the kernels KLV

and KLE
is a binary kernel, checking

whether the labels are identical or not. In this case the walk kernel writes as

KW(w,w′) = pG(w)pG′(w′)1(l(w) = l(w′)),

where 1(l(w) = l(w′)) is one if the walks have the same label, meaning that they have
the same length and identical sequences of vertex and edge labels, and zero other-
wise. Under this parametrization, the marginalized graph kernel can be written as
a standard dot product K(G,G′) = 〈φ(G), φ(G′)〉 in an infinite dimensional feature
space indexed by the set S of possible walk labels, defined by φ(G) =

(

φs(G)
)

s∈S
,

and φs(G) =
∑

w∈W(G) pG(w)1(l(w) = s). This formulation therefore bears strong
similarities with the contiguous label sequences graph kernel (Gärtner et al., 2003),
at the difference that walks are here weighted by their probability of occurring in
the graph, instead of a factor decreasing with their length. From this consideration,
it was shown that the product graph formalism, initially introduced to count iden-
tically labeled walks, can be extended to compute the marginalized graph kernel in
its general formulation (Kashima et al., 2004). We will come back to this in Chapter 2.

In the context of molecular graphs, because labeled walks correspond to the def-
inition of molecular fragments, we can note a strong similarity between the class of
walk-based graph kernels and the hashed fingerprint characterization of molecules in-
troduced in Section 1.2.1. There are however important differences in the sense that
fragments of infinite length are considered in these kernels, no hashing process is re-
quired, and fragments are weighted by a continuous parameter encoding its frequency
or probability of occurrence in the molecule, whereas fingerprints simply encodes their
presence or absence.
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More kernels

Note that according to the definition of walks, vertices are allowed to appear several
times in a walk. While this representation might look restrictive, walk-based graph
kernels gave promising results in chemoinformatics (Kashima et al., 2004; Mahé et al.,
2005) and bioinformatics (Borgwardt et al., 2005; Karklin et al., 2005) applications,
often comparing to state-of-the-art approaches. However, Ramon and Gärtner (2003)
highlight the limited expressiveness of walk-based graph kernels, showing in particular
that different graphs can be mapped to the same point in the corresponding feature
space. With the view to increase their expressivity, one would therefore rather con-
sider paths, that is, walks made of distinct vertices, in the above kernel constructions.
Unfortunately, such kernels were shown to be not computable in polynomial times
(Gärtner et al., 2003). Ramon and Gärtner (2003) therefore suggest that the expres-
sivity of graph kernels must be traded for their computability. As a first step toward
the refinement of the feature space corresponding to walk-based graph kernels, a kernel
based on the count of common subtrees is introduced. Its implementation is based on a
dynamic programming algorithm that recursively extends tuples of vertices neighbors.
While the complexity over the walk-based kernels is increased, the authors suggest
it might be affordable if the connectivity of the graphs is limited and the there is a
sufficient diversity in the labels of the vertices. This is likely to be the case of molec-
ular graphs, but the proposed kernel was not validated experimentally, at least to our
knowledge. Following these considerations, several graph kernels have been proposed
that overcome the limitations of the walk-based characterization of graphs.

Horváth et al. (2004) introduce a graph kernel based on the detection of cyclic
and tree patterns. These patterns are defined as canonical representations of cycles
and trees, being in particular unique up to isomorphism. To detect such patterns, a
graph is first split into a set of cycles9, and a set of trees resulting from the removal of
the edges belonging to the extracted cycles. The kernel is then defined as the sum of
the common cyclic and tree patterns that can be found in decomposed graphs. Note
importantly that the kernel is defined as the number of different types of patterns
that can be found in the graphs, which means that the frequency of the cycles or
subtrees corresponding to particular patterns is not taken into account in the kernel.
In the general case, this kernel cannot be computed in polynomial times, but it can be
obtained efficiently by the introduction of an upper bond on the admissible number of
cycles in the graphs. This boils down to assuming a certain kind of ”well-behavedness”
of the data, which seems to be verified in practice in the case of molecular graphs.
Indeed, 99.76% of the 42689 molecules of the NCI dataset, on which was validated the
kernel, have less than 100 cycles. This kernel is shown experimentally to significantly
outperform approaches based on the discovery of frequent subgraphs.

Borgwardt and Kriegel (2005) propose a kernel based on the count of common
paths. However, because it is not possible to consider exhaustive sets of paths, the
kernel construction is restricted to the sets of shortest paths between pairs of vertices.

9A cycle of the graph G is a path v0, . . . , vn, that is, vi 6= vj , 0 ≤ i, j ≤ n, where v0 = vn.
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Importantly, an edge-based characterization of paths is adopted, where a path is de-
fined as a succession of distinct edges. As a consequence, vertices can appear several
times in such paths, which contrasts with the classical definition of paths as walks
made of distinct vertices. The kernel definition follows that of convolution kernels,
and is expressed as the sum of a kernel between paths, over all pairs of shortest paths
found in the graphs. For a given pair of paths, the path kernel writes as the product
of a kernel between their starting and ending vertices, and a kernel comparing their
length. This kernel can be computed more efficiently than the kernels based on ex-
haustive sets of walks, and on a task involving classification of proteins, they led to
significantly better results.

Motivated by chemical applications, other graph kernels more specific to molecular
graphs have been introduced. In Ralaivola et al. (2005) a family of graph kernels
based on generalized fingerprints is introduced. A molecular graph G is represented
by a vector φ(G) indexed by a set S of molecular fragments, that is, sequences of
atom types and covalent bond types up to a given length, typically set to 8 or 10. In
the standard fingerprint characterization of molecules, φ(G) corresponds to a hashed
bitstring which size ranges from 512 to 2048. This hashed representation is compared
to a classical vectorial representation defined as φ(G) = (φs(G))s∈S , where φs(G) can
either be one if the fragment s occurs in the molecule, or count the number of times it
appears. The generalization of fingerprints is therefore two fold in the sense that first,
the vector φ(G) is not necessarily hashed, and second, it is not necessarily a bitstring.
Note that in practice the generalized fingerprints need not be stored explicitly. By
analogy with the Tanimoto coefficient introduced in Section 1.2.2, the proposed kernels
formulate as variations of the Tanimoto kernel defined as

K(G,G′) =
〈φ(G), φ(G′)〉

〈φ(G), φ(G)〉 + 〈φ(G′), φ(G′)〉 − 〈φ(G), φ(G′)〉 .

The proposed kernels often reach state of the art results on tasks involving the classi-
fication of molecules, and experiments suggest that generalized fingerprints are more
efficient to characterize molecular structures than usual hashed fingerprints10. Finally,
it is worth noting that while this family of kernels bears a strong similarity with walk-
based graph kernels, their implementation follows a completely different approach.
Indeed, because the length of the fragments considered is bonded, they can explicitly
be detected by depth first search algorithms. Although we skip details, this has im-
portant consequences in practice because first, the proposed kernels can be computed
efficiently using an algorithm derived from that of spectrum string kernels (Leslie et al.,
2002), and second, it allows to consider paths or cycles instead of general walks.

In Fröhlich et al. (2005) an optimal assignment kernel is introduced, based on the
idea of optimally assigning the atoms from one molecule to those of another. The kernel
formulates as a sum of kernels between pairs of atoms, which has to be maximized over

10Note that the classical Daylight fingerprints were used as a baseline in the study.
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all possible assignment of the set of atoms of the smaller molecule to the set of atoms of
the bigger one. The kernel comparing pairs of atoms follows a similar construction: it is
defined as a sum of kernels between atoms’ neighbors, which has to be maximized over
the possible assignments of the set of neighbors of one atom to the set of neighbors
of the other. This construction can be further extended to take into account the
similarity between remote neighbors (i.e., by considering neighbors of neighbors, and
so on) into the kernel between atoms. Because the degree of graph vertices is bonded
by four in molecular graphs, the global kernel computation can be carried out by a
greedy procedure, in a polynomial time comparable to that of the kernels based on
exhaustive sets of walks. Experiments show that this kernel sometimes led to better
results than the marginalized kernel Kashima et al. (2004), but unfortunately, it is not
positive definite.

Finally, although not directly related to molecular graphs, several kernel functions
are proposed in Swamidass et al. (2005) to compare 1D and 3D structures of molecules.
The 1D structure is defined as the SMILES representation of molecules, a string en-
coding the atomic constitution and covalent bonds of molecules that is widely used in
chemoinformatics. Classical string kernels (Leslie et al., 2002, 2004) are then applied
to compare these SMILES representations. The 3D structure is encoded by a set of
histograms of inter-atomic distances. One histogram corresponds to a particular pair
of atom types (e.g., Carbon/Oxygen), and a fixed-size vectorial representation can be
defined from the concatenation of the histograms. Such vectors are then compared by a
standard RBF kernel. Despite the simplicity of the representation, 1D kernels provide
results that are only slightly below those obtained with generalized fingerprints and
Tanimoto kernels 11. On the other hand, the kernel between 3D structures consistently
led to the worst results.

1.5 Contribution of the thesis

In this thesis, we consider the problem of defining kernel functions for molecular struc-
tures and their applications in virtual screening using SVM. This section gives a quick
overview of our contributions toward this goal, and draws the outline of the following
chapters.

1.5.1 Extensions of marginalized graph kernels

The pioneer graph kernels (Kashima et al., 2004; Gärtner et al., 2003) based on the
comparison of common walks in the graphs are subject to several problems in practice.
First, their computational complexity is cubic with respect to the product of the sizes
of the two graphs to be compared, which results in slow implementation for real-world

11Note, these kernels were initially introduced in Ralaivola et al. (2005), but are put in a broader
context in this paper.



40 CHAPTER 1. CONTEXT

problems, and limits in particular their applicability to virtual screening where the
databases to be screened typically involve thousands of molecules. Moreover, it might
not be optimal to characterize a graph by its exhaustive set of walks for at least two
reasons: on the one hand, some walks may contain relatively little information (e.g.,
a sequence C − C − C), while on the other hand, many walks are irrelevant because
they represent “tottering walks” on the graph, that is, walks which return to a visited
vertex immediately after leaving it.

In the first part of the thesis, we introduce two extensions of the original formulation
of the marginalized kernel between labeled graph (Kashima et al., 2004), which try
to address these issues. The first extension is to relabel each vertex automatically in
order to insert information about the environment of each vertex in its label. This has
both an effect in terms of feature relevance, because fragments of such labels contain
information about the environment of each atom, and computation time, because the
number of identical fragments between two molecules significantly decreases. Second,
we show how to modify the random walk model proposed in Kashima et al. (2004) in
order to remove totters, without increasing the complexity of the implementation.

1.5.2 Tree-pattern graph kernels for 2D structures

While they led to promising results in the fields of chemoinformatics (Kashima et al.,
2004; Mahé et al., 2005) and bioinformatics (Borgwardt et al., 2005; Karklin et al.,
2005) for instance, Ramon and Gärtner (2003) highlighted the limited expressiveness
of walk-based graph kernels, showing in particular that many different graphs can be
mapped to the same point in the corresponding feature space. As a first step toward
a refinement of the feature space representation of graphs, Ramon and Gärtner (2003)
introduced a kernel function comparing graphs on the basis of their common subtrees.
While this representation looks promising, the proposed kernel was not deeply analyzed
nor evaluated experimentally on real world applications, at least to our knowledge.

We propose in the second part of the thesis to validate the relevance of such tree
features to represent molecules with graph kernels. In a first step we revisit the for-
mulation introduced by Ramon and Gärtner (2003), from which we derive two kernels
with explicit feature spaces and inner products. One parameter entering their defini-
tion allows to gradually increase the complexity of the features considered to represent
the graphs. Decreasing the parameter results in a classical walk-based kernel, and by
moving this parameter, we can observe in detail the effect of increasing the number
and the complexity of the tree features representing the graphs. When the size of
allowed subtrees is increased however, we show that the practical use of this kernel
is limited by the explosion in the number of subtrees occurring in the graphs. In a
second step, we therefore introduce two extensions to the initial formulation of the
kernels that allow, on the one hand, to extend and generalize their associated feature
space, and on the other hand, to prevent a set of noisy patterns to be detected in the
graphs.
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1.5.3 Pharmacophore kernels for 3D structures

It is widely accepted that several drug-like properties can be efficiently deduced from
the 2D structure of the molecule, the Lipinski’s “rule of five” remaining a widely used
standard for the prediction of intestinal absorption (Lipinski et al., 2001), and the
prediction of mutagenicity from 2D molecular fragments being an accurate state-of-
the-art approach (King et al., 1996). In the case of target binding prediction, however,
the molecular mechanisms responsible for the binding are known to depend on a pre-
cise 3D complementarity between the drug and the target, from both the steric and
electrostatic perspectives.

Motivated by this consideration, we introduce in the last part of the thesis a family
of positive definite kernels specifically optimized for the manipulation of 3D structures
of molecules. The kernels are based on the comparison of the three-points pharma-
cophores present in the 3D structures of molecules, a set of molecular features known to
be particularly relevant for virtual screening applications. We present a computation-
ally demanding exact implementation of these kernels, as well as fast approximations
related to the classical fingerprint-based approaches.

1.5.4 ChemCpp

Note finally that the different kernels presented in this thesis have been implemented
within the open-source ChemCpp toolbox, a C++ toolbox dedicated to the compu-
tation of kernel functions for molecular structures. Its development was initiated by
Jean-Luc Perret while he was a postdoctoral fellow in the Bioinformatics Center of
Kyoto University (Japan), and is available at http://chemcpp.sourceforge.net.
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Chapter 2
Extensions of marginalized graph kernels

This work appeared in a slightly different form in the Journal of Chemical Information
and Modeling, co-authored with Nobuhisa Ueda, Jean-Luc Perret, Tatsuya Akutsu and
Jean-Philippe Vert (Mahé et al., 2005).

Introduction

Kashima et al. (2004); Gärtner et al. (2003) recently introduced positive definite kernels
between labeled graphs, based on the detection of their common walks. These kernels
correspond to a dot product between the graphs mapped to an infinite-dimensional
feature space, but can be computed in polynomial time with respect to the graph sizes.
Together with the support vector machine algorithm, they offer the possibility to model
structure activity relationships (SAR) of molecules from their 2D structure, without
the need for explicit molecular descriptors computation. Despite their promising results
in virtual screening applications (Kashima et al., 2004), they are subject to several
problems in practice. First, their computational complexity is cubic with respect to
the product of the sizes of the two graphs to be compared, which results in slow
implementations for real-world problems, and limits in particular their applicability
to virtual screening where the databases to be screened typically involve thousands of
molecules. Moreover, it might not be optimal to characterize a graph by its exhaustive
set of walks for at least two reasons: on the one hand, some walks may contain relatively
little information (e.g. a sequence C − C − C), while on the other hand, many walks
are irrelevant because they represent “tottering walks” on the graph, that is, walks
which return to a visited vertex immediately after leaving it.

In this chapter, we introduce two extensions of the original formulation of the
marginalized kernel between labeled graph (Kashima et al., 2004), which try to address
these issues. The first extension is to relabel each vertex automatically in order to insert
information about the environment of each vertex in its label. This has both an effect
in terms of feature relevance, because fragments of such labels contain information

43
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about the environment of each atom, and computation time, because the number of
identical fragments between two molecules significantly decreases. Second, we show
how to modify the random walk model proposed in Kashima et al. (2004) in order to
remove totters, without increasing the complexity of the implementation. Experiments
on two mutagenicity datasets validate the proposed extensions, making this approach
a possible complementary alternative to other SAR modeling strategies. This chapter
is organized as follows. We introduce notations and review the marginalized kernel
between labeled graphs in Section 2.1. The pair of proposed extensions are presented
in Sections 2.2 and 2.3, and are validated experimentally in Section 2.4. finally, Section
2.5 gives concluding remarks.

2.1 Marginalized graph kernels

In this section we define the basic notations and briefly review the graph kernels
introduced in Kashima et al. (2004) and Gärtner et al. (2003), upon which are based
the extensions that will be presented in Sections 2.2 and 2.3.

2.1.1 Labeled directed graphs

A labeled graph G = (VG, EG) is defined by a finite set of vertices VG, a set of edges
EG ⊂ VG×VG, and a labeling function l : VG ∪ EG → A which assigns a label l(x) taken
from an alphabet A to any vertex or edge x. We let |VG| be the number of vertices
of G, |EG| be its number of edges. In directed graphs, edges are oriented and to each
vertex u ∈ VG corresponds a set of incoming neighbors δ−(u) = {v ∈ VG : (v, u) ∈ EG}
and outgoing neighbors δ+(u) = {v ∈ VG : (u, v) ∈ EG}. We let d−(v) = |δ−(u)| be the
in-degree of the vertex u, and d+(v) = |δ+(u)| be its out-degree.

We assume below that a set of labels A has been fixed, and we represent a molecular
graph by a labeled directed graph G = (VG, EG). To do so, we let the set of vertices
VG correspond to the set of atoms of the molecule, the set of edges EG to its covalent
bonds, and label these graph elements according to an alphabet A consisting of the
different types of atoms and bonds. Note that since graphs are directed, a pair of edges
of opposite direction is introduced for each covalent bond of the molecule. Figure 2.1
shows a chemical compound seen as a labeled directed graph.

For a given graph G = (VG, EG), we let V∗
G = ∪∞

n=1Vn
G be the set of finite-length

sequences of vertices. A walk h of length n in the graph G is a sequence of n + 1
vertices (v0, . . . , vn) ∈ Vn+1

G with the property that (vi, vi+1) ∈ EG for 0 ≤ i ≤ n − 1.
We note |w| the length of the walk w, and we let W(G) ⊂ V∗

G be the set of walks of the
graph G, defined formally as W(G) = ∪∞

n=0Wn(G), where Wn(G) = {(v0, . . . , vn) ∈
Vn+1

G : (vi, vi+1) ∈ EG, i = 0, . . . , n − 1} is the set of walks of length n. The labeling
function l : VG ∪ EG → A can be extended as a function l : W(G) → A∗, where A∗

is the set of finite-length sequences of labels taken from A, the label l(w) of a walk
w = (v0, . . . , vn) ∈ W(G) being naturally defined as the succession of the labels of the
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Figure 2.1: A chemical compound seen as a labeled graph

vertices and edges it is made of: l(w) = (l(v0), l(v0, v1), l(v1), . . . , l(vn−1, vn), l(vn)) ∈
A2n+1.

2.1.2 Marginalized graph kernels

The kernel we consider in this work was introduced in Kashima et al. (2004), based on
the general marginalized kernels formulation (Tsuda et al., 2002). Marginalized kernels
define a global similarity measure by means of a simpler one, expressed on a set of
latent variables associated to the input data. In our case, these latent variables consist
of the set of walks of the graphs, which are easier to handle than general subgraphs
(Gärtner et al., 2003). Walks are assumed to be generated by a random walk process
on the graphs, and the kernel between two graphs is then defined as the expectation of
the pairwise walks similarity, according to their probability distributions. In labeled
graphs, sequences of vertex and edge labels are associated to the walks of the graph.
Their similarity can therefore assessed by a string kernel, and the kernel introduced in
Kashima et al. (2004) boils down to the following formula :

K(G1, G2) =
∑

(w1,w2)
∈V∗

G1
×V∗

G2

pG1(w1)pG2(w2)KL (l(w1), l(w2)) , (2.1)

where pG1 and pG2 are probability distributions on V∗
G1

and V∗
G2

, and the function
KL : A∗ ×A∗ 7→ R is a string kernel between label sequences.

Kashima et al. (2004) focus on the particular case where the kernel KL in (2.1) is
the Dirac function δ :

KL(l1, l2) = δ(l1, l2) =

{

1 if l1 = l2,

0 otherwise,
(2.2)

thus accounting for a perfect similarity between walks if they share the same label
and null otherwise1; and where, for a graph G = (VG, EG), the probability pG on V∗

G

1Note that if two label sequences are identical they implicitly have the same length.
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factorizes as a first order random walk model :

pG ((v0, . . . , vn)) = ps(v0)
n
∏

i=1

pt(vi|vi−1). (2.3)

In order to ensure that (2.3) defines a probability distribution on V∗
G (i.e.,

∑

w∈V∗
G
pG(w) =

1), we must impose constraints on the emission and transition probabilities ps and
pt. This can be done, for example, by choosing parameters 0 < pq(v) < 1 for
v ∈ VG, an initial probability distribution p0 on VG (

∑

v∈VG
p0(v) = 1), a transi-

tion matrix pa on VG × VG (
∑

v∈VG
pa(v|u) = 1 for u ∈ VG) positive only along edges

(pa(v|u) > 0 ⇒ (u, v) ∈ EG), and by setting, for any u, v ∈ V2
G,

{

ps(v) = p0(v)pq(v),

pt(v|u) = 1−pq(u)

pq(u)
pa(v|u)pq(v).

Under these conditions it can easily be checked that (2.3) is a probability distribu-
tion on V∗

G corresponding to a random walk on the graph with initial distribution p0,
transition probability pa, and stopping probability pq at each step. In particular, this
implies that only walks have positive probabilities under p: pG(w) > 0 ⇒ w ∈ W(G).
Figure 2.2 shows an example of this particular probabilistic model.

Following the definition introduced in Helma et al. (2004), we let S(A) be the
set of linear molecular fragments taken from A, that is, the set of sequences of bonds-
connected atoms based on the labels of A. For a given fragment s ∈ S(A) we introduce
a mapping φs : X → R, where X denotes the space of labeled directed graphs, defined
for a given graph G as φs(G) =

∑

w∈W(G) pG(w)δ(l(w), s). If we let KL be the Dirac
kernel, the kernel (2.1) can be written as a standard dot-product based on the molecular
fragments S(A):

K(G1, G2) = 〈Φ(G1),Φ(G2)〉
=
∑

s∈S(A)

φs(G1)φs(G2)

Under this parametrization, the kernel (2.1) therefore maps the graphs into an infinite-
dimensional space where each dimension corresponds to a particular linear fragment.
This shows a strong analogy with the widely used hashed fingerprints characterization
of molecules introduced in Section 1.2.1. There are however several important differ-
ences with the approach illustrated above. First, while marginalized kernels take into
account every single molecular fragment to compare the molecules, which is equiva-
lent to dealing with an infinite-dimensional feature vector, fingerprints only involve a
smaller number of features2. Moreover, because they only require their dot product,

2Typically the set of molecular fragments up to length 7 or 8.
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Figure 2.2: A molecular graph G (left) and its feature-space representation φ(G)
(right). Here, ∀ vi ∈ VG, pq(vi) = 0.1, pa(vj|vi) = 1/d+(vi) iff (vi, vj) ∈ EG, and
p0 can be chosen to be the uniform distribution, i.e. p0(vi) = 1/|VG| = 0.25. The
values (1− pq(vi))pa(vj|vi) are shown along each edge (vi, vj) of the graph. (note that
∑

vj∈VG
pa(vj|vi) = 1, ∀ vi ∈ VG). For the walk w = (v1, v2, v3), we therefore have

l(w) = (H,−, C,=, O) and p(w) = 0.25 ∗ 0.9 ∗ 0.3 ∗ 0.1. The right hand side of the
picture shows such examples of walks possibly occurring in the graph, together with
their associated probabilities.

marginalized kernels don’t need to explicitly store the high dimensional feature vectors
φ(G1) and φ(G2), thereby bypassing the clashing phenomenon occurring with hashed
fingerprints. Another important difference lies in the way of dealing with the substruc-
tures. Instead of just checking the presence of molecular fragments, marginalized ker-
nels can quantify their occurrence in the graph according to probability distributions.
This approach offers a more flexible way to evaluate the influence of the substructures
in the graph similarity. Note that the related method presented in Gärtner et al. (2003)
is equivalent to defining an infinite-dimensional fingerprint counting the frequency of
appearance of the molecular fragments in the graphs.

2.1.3 Kernels computation

While the kernel definition (2.1) involves a summation over an infinite number of walks,
it can be computed efficiently using product graphs and matrix inversions introduced
in Gärtner et al. (2003), and briefly recalled below.

Given two labeled graphs G1 = (VG1, EG1) and G2 = (VG2, EG2), their product graph
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is defined as the labeled graph G = (VG, EG) whose vertices VG ⊂ VG1 × VG2 are pairs
of vertices with identical labels ((v1, v2) ∈ VG iff l(v1) = l(v2)), and an edge connects
the vertices (u1, u2) and (v1, v2) iff (ui, vi) ∈ EGi

, for i = 1, 2, and l(u1, v1) = l(u2, v2).
Let us now define a functional π on the set of walks W(G) by

π ((u0, v0), (u1, v1), . . . , (un, vn)) = πs (u0, v0)

n
∏

i=1

πt ((ui, vi)|(ui−1, vi−1)) ,

with
{

πs(v1, v2) = p
(1)
s (v1)p

(2)
s (v2),

πt((v1, v2)|(u1, u2)) = p
(1)
t (v1|u1)p

(2)
t (v2|u2),

where p
(1)
s and p

(1)
t (resp. p

(2)
s and p

(2)
t ) are the functions used to define the probabilities

of random walks in (2.3) on the graph G1 (resp. G2).

If the label kernel KL is chosen to be the Dirac kernel (2.2), then the kernel (2.1)
only involves walks that can be found concurrently in the two graphs. By construction
of the product graph, there is a bijection between this set of common walks and the
set of walks W(G) of the product graph. Using the definition of the functional π, it
can then be shown that:

K(G1, G2) =
∑

w∈W(G)

π(w).

Define now the |VG| × |VG| transition matrix Πt = (πt(v|u))(u,v)∈V2
G
. Walks in the

product graph can be generated by raising this matrix to a particular power. If one
now defines the |VG|-dimensional vector πs = (πs(v))v∈VG

, it can be checked that:

∑

w∈W(G),
|w|=n

π(w) = π>
s Πn

t 1,

where 1 is the |VG|-dimensional vector with all entries equal to 1, and therefore:

K(G1, G2) =

∞
∑

n=0









∑

w∈W(G),
|w|=n

π(w)









= π>
s (I − Πt)

−1 1.

The direct computation of a matrix inversion has a complexity cubic in the size of
the matrix. In the case of the above product graph, the size of the matrix Πt is at
worst |VG1 | × |VG2|, and this approach can be time consuming. However, this matrix
is typically sparse, and savings can be achieved using an approximation of the matrix
inverse based on the first terms of its power series expansion : (I − Πt)

−1 ≈∑N
i=0 Πi

t.
Generally speaking, if we note |M | the number of non-zero elements of a matrix M ,
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and d(M) its maximum number of non-zero elements per line, computing the product
of two (n× n) sparse matrices A and B has a complexity of O(|A|d(B)). Moreover, if
we note d = d(A), we have d(Ak) ≤ min(dk, n). From these two observations, it follows

that computing the sum
∑N

i=0A
i has a complexity of O

(

|A|
∑N−1

i=1 min(di, n)
)

(Smola

and Kondor, 2003) . Note that if no hypothesis is made about the value of d, this com-
plexity reduces to O(|A|nN). By construction of the product graph G = G1 ×G2, we
have |VG| ≤ |VG1|×|VG2| and |EG| ≤ |EG1|×|EG2|. Moreover, if d+

1 and d+
2 are the max-

imum out-degrees of the nodes of G1 and G2, it follows that the maximum out-degree
of the nodes of the graph G is less or equal than d+

1 d
+
2 . This means that the size of the

matrix Πt is bounded by |VG1 | × |VG2|, its maximum number of non-zero elements by
|EG1|×|EG2|, and its maximum non-zero elements per line by d+

1 d
+
2 . It therefore follows

that the approximation of the matrix (I−Πt)
−1 by the first N terms of its power series

expansion has a complexity of O
(

|EG1||EG2|
∑N−1

i=1 min((d+
1 d

+
2 )i, |VG1||VG2|)

)

.

In the case where many vertices have identical labels, the product graph used to
compute the graph kernel has many vertices too, since the number of vertices in the
product graph corresponds to the number of pairs of vertices with identical labels. As
a result, the computation of the graph kernel can be time consuming, and this method
may be difficult to use on large chemical data-banks involving several hundred thousand
molecules. As an example, the computation can take several hundred milliseconds on
a recent desktop computer to compute the kernel between two chemical compounds
with a moderate number of atoms (typically between 10 and 50). Moreover, one might
expect the search of common walk labels to be too naive to detect interesting patterns
between chemical compounds. These two points constitute important issues to tackle
in order to use this type of graph kernels in real-world applications. We now present
two modifications of the original kernel with the goals to increase its relevance as a
similarity measure between molecular compounds, usually denoted as its expressive
power, and to reduce its computational complexity.

2.2 Label enrichment with the Morgan index

One possibility to address both issues simultaneously is to increase the specificity of
labels, for example by including contextual information about the vertices in their
labels. This has two important consequences. First, as the label specificity increases,
the number of common label walks between graphs automatically decreases, which
shortens the computation time. Second, this is likely to increase the relevance of the
features used to compare graphs, as walks are replaced by walks labeled with their
environment.

For the kind of applications we focus on in this paper—classification of chemical
compounds—it seems natural to consider the chemical environment of atoms. For
instance it makes sense to distinguish between atoms with similar labels but that belong
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to different functional groups. As a first attempt to define such local environment, we
propose to introduce information related to the topological environment of the vertices
in the labeling function of the graphs. To do so, we compute for each vertex of the
graph an index called the Morgan index (Morgan, 1965) , that is defined by a simple
iterative procedure. Initially, the Morgan indices are equal to 1 for every vertex. Then,
at each iteration, the Morgan index of each vertex is defined as the sum of the Morgan
indices of its adjacent vertices. Mathematically, if we let Mi be the vector of the
Morgan indices computed at the ith iteration, this reads M0 = 1 and Mn+1 = AdjMn,
where Adj is the graph adjacency matrix and 1 the unity vector. This process is
illustrated in Figure 2.3.

The Morgan index was initially developed to determine canonical representations
of molecules, and is considered a good and fast solution to detect graph isomorphism.
Note moreover that the Morgan index associated to a particular vertex after n itera-
tions actually counts the number of walks of length n that start in that vertex and end
somewhere in the graph. This vertex descriptor has already been studied in chemical
graph theory, and is known as the atomic length-n walk-count descriptor in the litera-
ture(Rücker and Rücker, 1993) .
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Figure 2.3: Morgan index process

Finally, given the Morgan indices after n iterations, we propose to augment the
label of a vertex by its value, before computing the marginalized graph kernel. This
results in a family of kernels (Kn)n≥0, indexed by the number of iterations for the
Morgan index computation. When the number of iterations increases, the topological
information vehiculated by the Morgan index becomes more and more specific to the
graphs. Pairs of vertices having at the same time identical atom type and topological
properties are therefore less and less likely to occur. This results in a systematic
decrease of the computation time, because the number of nodes of the product graph
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automatically decreases, but on the other hand, the similarity between molecules may
be difficult to assess if their description becomes too specific. This suggests that the
step of the Morgan process that performs the optimum trade off between the uniform
and the molecular-specific descriptions of vertices needs to be found.

2.3 Preventing totters

A second avenue to modify the original graph kernel is to modify the probability
(2.3). This probability is the distribution of a 1st-order Markov random walk along
the edges of the graph, killed with some probability after each step. We propose to
modify the random walk model to prevent ”totters”, that is, to avoid any walk of the
form w = v0, . . . , vn with vi = vi+2 for some i. The motivation here is that such
excursions are likely to add noise to the representation of the graph. For example, the
existence of a walk with labels C-C-C might either indicate the presence of a succession
of 3 C-labeled vertices in the graph, or just a succession of 2 C-labeled vertices visited
by a tottering random walk. By preventing totters, the second possibility disappears.
Figure 2.4 illustrates this idea.

C

CC

walk w1

walk w2

v2

v1 v3

Figure 2.4: Illustration of the process of prevention of the tottering walks on a toy
example. Walks w1 and w2 are both labeled as C-C-C, but the walk w2 corresponds to
a tottering walk.

2.3.1 Modification of the random walk

A natural way to carry out this modification is to keep the general kernel definition
(2.1) but modify the probability model (2.3) as follows:

p((v0, . . . , vn)) = ps(v0)pt(v1|v0)
n
∏

i=2

pt(vi|vi−2, vi−1), (2.4)
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where for the graph G, pi(.), pt(.|.), and pt(.|., .) satisfy for any (t, u, v) ∈ V3
G:















ps(v) = p0(v)p
(0)
q (v),

pt(v|u) =
1−p

(0)
q (u)

p
(0)
q (u)

pa(v|u)pq(v),

pt(v|t, u) = 1−pq(u)
pq(u)

pa(v|t, u)pq(v).

Here we assume that 0 < pq(v), p
(0)
q (v) ≤ 1 for each vertex v, pa(·|u) is a probability

on VG that is only positive on the neighbors of u, and pa(·|t, u) is a probability on
VG that is only positive on the neighbors of u different from t. This model is simply
the distribution of a 2nd-order Markov random walk, killed at each step with some
probability pq(v) (or p

(0)
q (v) after the first vertex, see Section 2.4), which can not follow

excursions of the form u→ v → u. In other words, only walks belonging to

WNT (G) = {w = (v0, . . . , vn) ∈ W(G) : vi 6= vi+2, i = 0, . . . , n− 2} , (2.5)

can have a positive probability under this model. Given this new random walk model,
the function (2.1) is still a valid kernel, but the implementation described in Section
2.1.3 can not be used directly anymore.

2.3.2 Computation of the new kernel

While walks have been previously defined as the succession of vertices they are made
of, one can see a walk as a starting vertex followed by a succession of connected edges.
In such a definition, a pair of connected edges provides information about a triplet of
vertices of the walk : the starting vertex of the first edge, the vertex that connects
them, and the ending vertex of the second edge. A second-order information about
the succession of vertices therefore resumes to a first-order one based on the succession
of edges. This suggests it should be possible to deal with second-order ”vertex-based”
random walks models by means of a first-order ones involving edges of the graphs.

Based on this consideration, we now derive an explicit way to perform the com-
putation of the kernel (2.1) under the model (2.4). To do so, we introduce a graph
transformation such that the 2nd-order random walk (2.4) in the original graphs fac-
torizes as a first-order Markov process (2.3) in the transformed ones. More precisely,
for a graph G = (VG, EG), let the transformed graph G′ = (VG′ , EG′) be defined by

VG′ = VG ∪ EG,

and

EG′ =
{(

v, (v, t)
)

: v ∈ VG, (v, t) ∈ EG

}

∪
{(

(u, v), (v, t)
)

: (u, v), (v, t) ∈ EG, u 6= t
}

.
(2.6)

The vertices of the transformed graph G′ can therefore correspond either to edges or
vertices of the original graph G. Among all walks W(G′) on G′, let us consider the
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subset of walks that start on an arbitrary vertex in V , that is the set

W{VG}(G′) = {w′ = (v′0, . . . , v
′
n) ∈ W(G′) : v′0 ∈ VG} . (2.7)

Note that from the definition of the transformed graph edges, it is easy to check that
any walk w′ = v′0 . . . v

′
n ∈ W(G′) starting with a vertex v′0 ∈ VG must subsequently

be made of vertices v′i, i = 1, . . . , n corresponding to edges of G. This construction is
illustrated in Figure 2.5. We define the labeling function l′ of the transformed graph
G′ as follows :

• for a node v′ ∈ VG′ the label is either l′(v′) = l(v′) if v′ ∈ VG, or l′(v′) = l(v) if
v′ = (u, v) ∈ EG.

• for an edge e′ = (v′1, v
′
2) between two vertices v′1 ∈ VG∪EG and v′2 ∈ EG, the label

is simply given by l′(e′) = l(v′2).

This labeling is also illustrated in Figure 2.5.
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Figure 2.5: The graph transformation. I) The original molecule. II) The corresponding
graph G = (VG, EG). III) The transformed graph. IV) The labels on the transformed
graph. Note that different widths stand for different edges labels, and gray nodes are
the nodes belonging to VG.

Let us consider the map f : WNT (G) → V∗
G′ defined by:

f (v0 . . . vn) = v′0 . . . v
′
n,

with
{

v′0 = v0 ∈ VG,

v′i = (vi−1, vi) ∈ EG, for i = 1, . . . , n.
(2.8)
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This definition gives rise to the following proposition, whose proof can be found in
Appendix 2.5 :

Proposition 2. f is a bijection between WNT (G) and W{VG}(G′) and for any walk
w ∈ WNT (G) we have l(w) = l′(f(w)).

Finally, let the functional p′ : V∗
G′ → R be derived from (2.4) by:

p′ ((v′0, . . . , v
′
n)) = p′s(v

′
0)

n
∏

i=1

p′t(v
′
i|v′i−1), (2.9)

with

p′s(v
′) =

{

ps(v
′) if v′ ∈ VG,

0 if v′ ∈ EG,

and

p′t(v
′|u′) =



















pt(v|u′) if u′ ∈ VG

and v′ = (u′, v) ∈ EG,

pt(v|t, u) if u′ = (t, u) ∈ EG

and v′ = (u, v) ∈ EG.

Note that only walks belonging to W{VG}(G′) have a positive value under p′.

Based on the definitions of f and p′, we can state the following result, whose proof
is postponed in Appendix 2.5 :

Theorem 3. Under the bijection f : WNT (G) → W{VG}(G′) defined in (2.8), for any
walk w ∈ WNT (G) we have p(w) = p′(f(w)) .

We have defined in Proposition 2 a graph transformation showing a one to one
correspondence between a particular subset of the walks of the transformed graph
(the set W{VG}(G′)) and the set of non-tottering walks of the original graph (the
set WNT (G)). Moreover we introduced a 1st-order Markov functional (2.9) on the
transformed graph, positive only on this particular subset of walks W{VG}(G′), that
corresponds to the 2nd-order probability distribution (2.4) that was previously defined
on the original graph to prevent totters. Finally, because our graph transformation
preserves the walk labeling, we can immediately deduce the following:

Corollary 4. For any two graphs G1 and G2, the kernel (2.1) based on the second-
order Markov random walk model (2.4) can be expressed in terms of the transformed
graphs G′

1 and G′
2 by:

K (G1, G2) =
∑

(w′
1,w′

2)
∈V∗

G′
1
×V∗

G′
2

p′1(w
′
1)p

′
2(w

′
2)KL (l′(w′

1), l
′(w′

2)) ,

where p′1 (resp. p′2) is the probability distribution on V∗
G1

(resp. V∗
G2

) defined by (2.9).
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This shows that computing the K(G1, G2) under the 2nd-order Markov model (2.4)
for the random walk is equivalent to computing a kernel between the transformed
graphs G′

1 and G′
2 under a 1st-order Markov random walk (2.9). This can therefore be

carried out using the computation scheme described in Section 2.1.3, at the expense
of an increased complexity.

More precisely, consider a graph G = (VG, EG), whose maximum vertex out-degree
is d+, and the graph G′ = (VG′ , EG′) resulting from its transformation. By definition
of VG′, |VG′ | = |VG| + |EG|. Moreover, from the two steps appearing in the definition
of EG′, we also have |EG′| ≤ |EG| + (d+ − 1)|EG| = d+|EG|. Finally, it is easy to check
that the node of maximum out-degree in the transformed graph is precisely the node
of maximum out-degree in the original graph. This is due to the fact that the nodes
of G′ corresponding to nodes of G have the same degree that their homologs, and that
the nodes in G′ corresponding to edges of G have a degree equal to those of the nodes
being reached by the edges in G minus one (to prevent tottering). From Section 2.1.3,
the complexity of the kernel between two graphs G1 = (VG1 , EG1) and G2 = (VG2 , EG2)

writes asO
(

|EG1||EG2|
∑N−1

i=1 min((d+
1 d

+
2 )i, |VG1||VG2|)

)

. As a result, if we now consider

the graphs G′
1 = (VG′

1
, EG′

1
) and G′

2 = (VG′
2
, EG′

2
) obtained by transforming G1 and G2,

this complexity is of order

O
(

d+
1 d

+
2 |EG1||EG2|

∑N−1
i=1 min

(

(d+
1 d

+
2 )i, (|VG1| + |EG1|)(|VG2| + |EG2|)

)

)

.

2.4 Experiments

In our experiments, we adopted the parametrization proposed in Kashima et al. (2004).
For a given graph G = (VG, EG), a single parameter pq is used to define the 1st-order
random walk model as follows, for any u, v ∈ VG:

• p0(v) = 1/|VG|

• pq(v) = pq < 1

• pa(v|u) =

{

1/d+(u) if (u, v) ∈ EG

0 otherwise

This way, the emission probability distribution is chosen to be uniform over the
set of edges, a constant ending probability is introduced for every node of the graph,
and transition probabilities are made uniform over the set of neighbors of the nodes.
When we do not have prior knowledge about the data, this seems to be a natural way
to parametrize the model.

To filter tottering walks, we adapt this model to define in a similar way the 2nd-
order random walk model (2.4) introduced in Section 2.3.1. The main differences

between the two models concern the functional pq(v), p
(0)
q (v), and pa(v|t, u). Indeed,

in the first step of the random walk process, the walk is not subject to tottering and we
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can consider the same first order transition functional pa(v|u) and ending probabilities

p
(0)
q (v). In the following steps however, we may have to set the ending probability
pq(v) to one, in order to explicitly kill random walks when reaching a node with only
one neighbor, because in this case, the only possibility to continue the walk is to
“totter” to the previous node. The definition of pa(v|t, u) also reflects the modification
required to prevent totters: the number of possible edges to follow from a node v is
only d(v) − 1, because one edge has already been used to reach v. This leads to the
following 2nd-order Markov model, for any u, v, w ∈ VG:

• p0(v) = 1/|VG|

• pa(v|u) =

{

1/d+(u) if (u, v) ∈ EG

0 otherwise

• pa(v|t, u) =

{

1/(d+(u) − 1) if (u, v) ∈ E and v 6= t

0 otherwise

• p
(0)
q (v) = pq

• pq(v) =

{

1 if d+(v) = 1

pq otherwise

The classification experiments described below were carried out with a support
vector machine based on the different kernel tested. Each kernel was implemented in
C++, and we used the free and publicly available GIST3 software to perform SVM
classification. No optimization of the parameters required by GIST was carried out.
The only option specified was the -radial option, which converts the kernel into a
radial basis function, a standard way to normalize the data. Two datasets of chemical
compounds were used. Both gather results of mutagenicity assays, and while the first
one (Debnath et al., 1991) is a standard benchmark for evaluating chemical compounds
classification, the second one (Helma et al., 2004) was introduced more recently.

Generally speaking, focusing only on the global accuracy is hazardous to analyze
classification results and may lead to wrong conclusions. This is particularly true when
the dataset is unbalanced, which means that one of the classes is over-represented
compared to the other. A safer approach is to describe the classifier using ROC
analysis (Gribskov and Robinson, 1996), and consider the sensitivity/specificity rates.
Sensitivity is defined as the ratio between the correctly classified positive data (the true
positives) and the total number of positive data (the sum of true positive and false
negative data). It therefore accounts for the proportion of positive data that will be
retrieved by the classifier. Similarly, specificity accounts for the proportion of negative
data that the classifier will correctly find (the ratio between true negative data and the

3http://microarray.cpmc.columbia.edu/gist



2.4. EXPERIMENTS 57

whole negative data, that is, the true negative plus the false positive). Clearly, a good
classifier will show a high sensitivity together with a good specificity. Moreover, recall
from Section 1.3 that since the SVM prediction is obtained by thresholding a score
function (the prediction being +1 if the score is positive, and -1 otherwise), varying
the decision threshold makes it possible to draw the evolution of the true positive rate
versus the false positive rate in the ROC curve, from which we can derive a global
indicator of the performance of the classifier: the AUC, Area Under the (ROC) Curve.
The AUC of an ideal classifier would be 1 (the positive data would be the first to be
recognized as positive according to their scores), while for a random classifier it would
be 0.5 (Fawcett, 2003).

2.4.1 First dataset

This dataset contains 230 chemical compounds (aromatic and hetero-aromatic nitro
compounds) tested for mutagenicity on Salmonella typhimurium. A SAR analysis on
this dataset was first conducted by Debnath et al. (1991), who identified two subsets of
the data: 188 compounds considered to be amenable to regression and 42 compounds
that could not easily be fitted by regression. In this study we mainly focus on the first
set of 188 compounds. These compounds can be split into two classes: 125 positive
examples with high mutagenic activity (positive levels of log mutagenicity), and 63
negative examples with no or low mutagenic activity. Each chemical compound is rep-
resented as a graph with atoms as vertices and covalent bonds as edges. This subset
of 188 compounds was already used in the original paper Kashima et al. (2004), and
in a similar way, kernels are evaluated here by their leave-one-out error. AUC will be
our quality criterion.

Table 2.1 shows the results we can get with the kernel as it is formulated in Kashima
et al. (2004). They will be our reference results to evaluate the impact of the proposed
extensions. This table shows a consistent increase in the AUC when the parameter pq

decreases, that is to say when the kernel favors long walks.
Figure 2.6 shows the effect of removing the tottering walks with the original kernel

formulation for distinct values of pq. The curve reveals that the relationship between
small pq and high AUC observed with the original formulation of the kernel does not
rigorously hold any longer when tottering walks are filtered. Indeed, we can find in
this case an optimum value of pq around 0.1. Above this value, we can notice on
the one hand a small but consistent increase on classification when tottering walks
are removed, and on the other hand that the effect of this extension becomes smaller
when pq increases. This is probably due to the fact that when pq increases, the walks
taken into account by the kernel tend to become shorter and are therefore less likely to
totter. When pq ≤ 0.1, the AUC decreases and becomes smaller than the one obtained
with the original formulation for pq = 0.001.

Table 2.2 shows the AUC results for distinct values of pq combined with the in-
troduction of Morgan indices. It reveals that the introduction of Morgan indices can
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pq Accuracy Sensitivity Specificity AUC
0.01 89.4 88.8 90.4 94.4
0.05 89.4 88.8 90.4 94.2
0.1 89.9 89.6 90.4 94.0
0.2 90.4 90.4 90.4 93.8
0.3 90.4 90.4 90.4 93.6
0.4 88.8 88.0 90.4 93.4
0.5 88.8 88.0 90.4 93.0
0.6 88.3 87.2 90.4 92.7
0.7 87.2 85.6 90.4 92.2
0.8 86.7 84.8 90.4 91.2
0.9 83.5 82.4 85.7 89.2

Table 2.1: Classification of the 1st dataset, with the original formulation of the kernel
function for different values of the parameter pq.

always increase the classification results, and interestingly, the optimal index to be
used depends on the value of pq : it is generally smaller for little values of pq. This
reflects the fact that we have to add more specificity in the atoms labels for large pq,
since only walks involving a few atoms will be taken into account. However, no prior
rule can define a precise relation between the Morgan index and the parameter pq.

pq 0.01 0.05 0.1 0.3 0.5 0.7 0.9

MI = 0 94.4 94.2 94.0 93.6 93.0 92.2 89.2
MI = 1 94.4 94.2 93.8 93.2 92.7 92.2 92.0
MI = 2 96.1 96.0 95.9 95.2 94.3 93.6 93.1
MI = 3 94.6 94.7 94.7 94.9 94.8 94.8 94.6
MI = 4 93.3 93.3 93.2 93.3 93.1 93.0 92.6
MI = 5 92.3 92.4 92.5 92.8 93.2 93.4 93.5
MI = 6 91.6 91.8 92.0 92.6 92.8 92.9 92.8
MI = 7 90.2 90.1 90.1 90.1 90.1 90.1 90.2
MI = 8 86.9 87.1 87.3 87.7 88.1 88.3 88.4
MI = 9 80.5 80.8 81.5 81.6 81.7 81.9 81.7
MI = 10 72.8 72.8 73.7 76.2 77.1 77.6 77.9

Table 2.2: AUC for the 10 first Morgan indices and different ending probabilities, 1st
dataset.

Table 2.3 shows the AUC results when tottering walks have been filtered. The
classification results show the same behavior of the kernel with respect to pq and the
Morgan indices when the tottering walks have been filtered. The values obtained are
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Figure 2.6: AUC for distinct values of pq, with and without filtering the tottering
walks, 1st dataset.

actually sensibly equal, which suggests that filtering the tottering walks provides little
additional information. We can however notice that performances are globally reduced
when pq becomes smaller. Tottering between atoms made specific to the molecule
therefore accounts for graphs similarity when long walks are taken into account.

Finally, results about computation times are presented in Figure 2.7. The top
curve plots the evolution of the time needed to compute the kernels when different
Morgan indices were introduced. More precisely it plots the ratio between the time
needed for a given iteration of the Morgan process, and the time initially required.
Note that the y-axis is in log-scale, so that we can notice a drastic decrease in the
computational cost. For example, at the 3rd iteration of the process, computation
time is reduced by a factor around 40 when tottering walks have not been filtered.
Remind that when Morgan indices are introduced, atoms are made more specific to
the molecule they belong, and as a consequence fewer atoms are apariated in the
product graph, which makes the matrix inversion cheaper. This effect is even stronger
when filtering the totters. The bottom curve presents the impact of totter removal
on the computation times. The curve shows ratio between the computation times of
the original formulation and the totters filtering. This ratio becomes smaller with the
Morgan process, but while the computation without totters was initially more than a
hundred time longer than with totters, it remains at least ten times longer with high
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pq 0.01 0.05 0.1 0.3 0.5 0.7 0.9

MI = 0 94.3 94.3 94.6 94.0 93.1 92.4 89.3
MI = 1 94.0 95.1 94.2 94.0 93.2 92.3 92.0
MI = 2 94.9 94.9 95.2 95.4 94.5 93.6 93.1
MI = 3 93.3 93.4 93.6 94.7 94.8 94.8 94.6
MI = 4 92.5 92.4 92.7 93.3 93.2 92.9 92.6
MI = 5 90.5 90.7 91.0 92.6 93.1 93.4 93.4
MI = 6 88.2 88.5 89.9 92.1 92.8 92.9 92.8
MI = 7 84.7 86.4 88.5 90.2 90.1 90.2 90.2
MI = 8 69.2 73.9 81.4 87.4 88.0 88.2 88.3
MI = 9 57.1 60.6 70.7 81.3 81.8 81.7 81.7
MI = 10 49.2 48.8 52.7 73.8 76.8 78.2 78.3

Table 2.3: AUC for the 10 first Morgan indices and different ending probabilities, when
tottering walks have been filtered, 1st dataset.

Morgan indices.

As a comparison, Table 2.4 gathers 10-fold cross-validated accuracy results already
obtained for the classification of this set of 188 compounds. These methods can be
split in three categories : those relying on global molecular properties4 (lin.Reg, NN,
DT ), those considering the structure of the molecules as a set of atoms and con-
necting bonds (Progol1 ), and those involving the two representations (Progol2, Sebag,
Kramer). The best 10-fold cross-validated accuracy corresponding to our previous
experiments is 91.2%. As we can notice from Table 2.4, this result is better than those
based on one of the two molecular representations, but it is below those obtained by
methods that combine both representations. This table reveals that there is a signifi-
cant gap between the Progol1 and Progol2 results, which are obtained using the same
algorithm when the global descriptors are considered or not as an additional source of
information. This suggests that the information contained in the two descriptions may
be complementary. Moreover, the best result reported Kramer and De Raedt (2001)
deals with the structure of the molecule via a fragment-based characterization, which,
as we already mentioned, shows some similarities with the graph kernel approach. It
seems therefore reasonable to draw the hypothesis that the results of the graph kernel
approach may be improved if such a combination of information about the molecules
is used.

Little work has been carried out on the 42 compounds that constitute the “non
regression friendly part” of the dataset. To our knowledge, the only results were pub-
lished in King et al. (1996), and are summarized in Table 2.5. The fundamental

4for instance, the molecular hydrophobicity (logP), the energy of the lowest unoccupied molecular
orbital (LUMO) and two additional binary descriptors coding for the presence of particular features
in the molecule.
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Figure 2.7: Top : Time needed to compute the kernel for the 10 first iterations of the
Morgan process. Bottom : Ratio between computation times with or without filtering
the totters for the 10 first iterations of the Morgan Process, 1st dataset.
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Lin.Reg DT NN Progol1 Progol2 Sebag Kramer Graph kernels
89.3% 88.3% 89.4% 81.4% 87.8% 93.3% 95.7% 91.2%

Table 2.4: Accuracy results obtained for the 10-fold Cross-Validation of the Mutag
dataset. Lin.Reg (Linear Regression), DT (Decision Tree), NN (Neural Network) and
Progol1/2 (Inductive Logic Programming) : King et al. (1996) ; Sebag : Sebag and
Rouveirol (1997) ; Kramer : Kramer and De Raedt (2001).

difference with the “friendly part” of the dataset, lies in the fact that here, the best
result was obtained using only the 2D structure of the compounds (with the Progol1
method). Using our graph kernels, we can reach 88.1% of correct classification us-
ing a similar leave-one-out procedure. Outperforming all the results from Table 2.5,
this result shows that the graph kernel approach is indeed efficient when the relevant
information is to be sought in the structure of the molecules.

Lin.Reg Lin.Reg+ DT ANN Progol1 Progol2 Graph Kernels
66.7% 71.8% 83.3% 69.0% 85.7% 83.3% 88.1%

Table 2.5: Accuracy results obtained for the leave-one-out classification of the “un-
friendly part”of the Mutag dataset. Lin.Reg (Linear Regression), DT (Decision Tree),
NN (Neural Network) and Progol1/2 (Inductive Logic Programming) : King et al.
(1996).

Independently of our work, related graph kernels for chemoinformatics applica-
tions were recently introduced (Ralaivola et al., 2005) . Their formulation is driven
by the usual molecular fingerprinting process, and several kernel functions are pro-
posed based on variations of the Tanimoto coefficient. Different ways of fingerprinting
the molecules are considered, and in particular, some experiments compare standard
hashed fingerprints (such as Daylight fingerprints) with exhaustive fingerprints, for
molecular fragments up to a given length (which was set to 10). In exhaustive fin-
gerprints, a dimension is introduced for every possible molecular fragment, which is
closely linked to the description of molecules related to the graph kernels introduced
here. Although the performances of these different configurations are similar, this
study tends to reveal that the hashing process leads to a decrease in the classification
accuracy. More precisely, the best result for exhaustive fingerprints reaches 87.8% of
correct leave-one-out classification, while it is 87.2% when the fingerprints are hashed.
Using our graph kernels, we can reach a leave-one-out accuracy of 91%, which indi-
cates that the marginalized graph kernels approach may compare favorably to classical
hashed-fingerprints. Note however that results in Ralaivola et al. (2005) were not ob-
tained using SVM, but using the Voted Perceptron algorithm, an algorithm known to
provide comparable results, and that further refinements of their kernels lead to an
optimal accuracy of 91.5%.
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2.4.2 Second dataset

The second database considered was recently introduced in Helma et al. (2004). It
consists of 684 compounds classified as mutagens or non-mutagens according to a test
known as the Salmonella/microsome assay. The classes are well balanced with 341
mutagens compounds for 343 non-mutagens ones. Although the biological property
to be predicted is the same as the one of the previous section, the two datasets are
fundamentally different. While Debnath et al. (1991) focused on a particular family
of molecules (aromatic and hetero-aromatic nitro compounds), this dataset involves
a set of very diverse chemical compounds, qualified as noncongeneric in the original
paper. To predict mutagenicity, the model therefore needs to solve different tasks :
in the first case it has to detect subtle differences between homogeneous structures,
while in the second case it must seek for regular patterns within a set of structurally
different molecules. As stated in Helma et al. (2004), toxicity is a very complex and
multi-factor mechanism, so that diverse datasets need to be considered in order to be
able to predict mutagenicity in real-world applications. Finally, note that this dataset
is public and a further description can be found in Helma et al. (2004).

We applied different graph kernels to this dataset in order to compare our approach
to the results presented in Helma et al. (2004). Several machine learning algorithms
have been used in that paper (namely SVM, decision trees and rule learning), based on
a molecular-fragment characterization of molecules. In their method, a set of substruc-
tures occurring frequently in mutagenic compounds, but seldomly in non-mutagens
ones is defined, and molecules are represented by bit-strings indicating the presence or
absence of these substructures. Tables 2.6 and 2.7 gather results on this dataset using
the original and totters-filtering versions of the kernel, for several values of pq and dif-
ferent iterations of the Morgan process. Following Helma et al. (2004), we performed
classifications by a 10-fold cross-validation procedure, and performances are evaluated
according to the accuracy, sensitivity and specificity values of the models.

A quick inspection of these two tables reveals that, similarly to the original paper,
the test sensitivity and specificity rates are always similar. This means that the differ-
ent models obtained can be used to predict either mutagenicity or non-mutagenicity,
with a similar degree of confidence. From this consideration, we base our analysis of
the results on the global test accuracy of the models.

Several conclusions can be drawn from these tables. First, when no Morgan in-
dices are introduced (i.e. MI = 0), we can note from both tables that test accuracy
systematically increases when the parameter pq decreases. This is consistent with the
experiments carried out with the previous dataset and suggests that it is worth con-
sidering long walks. Moreover, when we compare the two tables, we note that filtering
the totters systematically enhances the classification, which comforts the intuition that
this kind of walks adds noise to the description of the molecules.

Concerning the introduction of the Morgan indices, we can note from the two tables
that, for any value of pq considered, classification is improved for the first iteration of
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Training Test Test Test
MI pq Accuracy Accuracy Sensitivity Specificity
0 0.1 94.47 76.02 73.34 78.67

0.2 93.85 75.14 72.65 77.77
0.3 92.65 74.20 71.14 77.26
0.4 92.06 73.36 70.76 75.90
0.5 92.77 73.32 71.61 75.03

1 0.1 96.03 79.01 77.06 80.97
0.2 96.00 79.32 77.55 81.08
0.3 96.08 78.70 77.65 79.73
0.4 96.11 78.40 76.45 80.30
0.5 96.01 77.17 76.00 78.20

2 0.1 97.20 78.09 76.95 79.25
0.2 97.13 77.89 77.33 78.47
0.3 97.02 78.70 78.43 78.93
0.4 96.91 78.34 78.11 78.56
0.5 96.82 78.20 77.71 78.70

3 0.1 97.42 75.32 73.62 76.95
0.2 97.14 75.00 73.31 76.67
0.3 96.92 75.88 74.55 77.21
0.4 96.71 75.00 74.04 76.12
0.5 96.57 75.27 73.81 76.69

4 0.1 98.03 71.45 68.53 74.41
0.2 97.55 71.80 69.47 74.20
0.3 97.29 72.10 69.77 74.50
0.4 97.10 71.52 69.79 73.21
0.5 96.87 72.18 69.86 74.53

5 0.1 97.65 66.76 64.32 69.30
0.2 97.24 67.73 65.56 69.80
0.3 96.94 66.99 64.65 69.27
0.4 96.58 66.85 65.11 68.72
0.5 96.38 66.73 64.62 68.86

Table 2.6: Classification results for the 2nd mutagenicity dataset, with the tottering
walks.
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Training Test Test Test
MI pq Accuracy Accuracy Sensitivity Specificity
0 0.1 95.60 77.37 76.59 78.15

0.2 95.11 75.46 72.38 78.63
0.3 94.48 74.93 71.95 77.82
0.4 93.65 75.13 71.81 78.44
0.5 93.22 74.18 71.58 76.77

1 0.1 97.22 77.87 74.90 80.90
0.2 96.43 78.89 76.65 81.16
0.3 96.21 79.06 77.28 81.00
0.4 96.20 78.54 77.25 79.84
0.5 96.22 78.47 76.65 80.03

2 0.1 97.72 76.59 72.03 81.21
0.2 97.52 77.95 75.35 80.47
0.3 97.20 78.04 77.01 79.08
0.4 97.04 78.28 77.77 78.80
0.5 96.90 78.03 77.54 78.53

3 0.1 97.97 75.18 69.82 80.54
0.2 97.79 75.87 72.99 78.69
0.3 97.53 75.48 74.36 76.63
0.4 97.06 75.54 73.98 77.10
0.5 96.78 75.62 75.22 76.00

Table 2.7: Classification results for the 2nd mutagenicity dataset, when tottering walks
were removed.
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the process, after what it systematically decreases. This means that although the
first step of the Morgan process could improve the expressive power of the kernel, the
information introduced into the description of the molecule becomes too specific from
the second iteration. Interestingly, we can also notice that for a given index of the
Morgan process, the optimal value of pq is not the smallest one any longer.

Filtering the totters after the introduction of the Morgan indices have a somehow
ambiguous effect. It does not show a consistent trend with respect to the parameter
pq. However, the two optimal results show a 79.32% and 79.06% test accuracy, so that
results are globally similar.

Finally, note that the computation times needed to compute the different kernels
follow the same behavior as the results presented in the previous subsection.

Helma et al. (2004) pointed out the need to consider structurally diverse datasets
such as this one in order to be able to model multi factor mechanisms such as toxicity.
Although the classification accuracy provides a general measure of the effectiveness of
the algorithm, it is of limited help to quantify its ability to handle the diversity of the
dataset. For instance, a situation where the subset of correctly classified data shows a
smaller diversity compared to the global dataset actually makes sense. This situation
means that the algorithm is only efficient in a particular subspace of the chemical
space defined by the whole dataset, which is actually likely to occur, and reveals that
the method fails to handle the diversity of the dataset. Analyzing the diversity of
the classification results is therefore useful to give fair conclusions about the method.
Table 2.8 shows the values of a diversity criterion measured on the whole dataset and
on several subsets: the subsets of positive compounds, negative compounds, correctly
classified compounds, positive compounds that were correctly classified and negative
compounds that where correctly classified. These values were computed for two kernels
that correspond to optimal results in the previous tables : those obtained using the
tottering walks, the first iteration of the Morgan process, and values of pq of 0.1 and
0.2 5.

To evaluate the diversity of a subset, we use the average distance of the points
of this subset to their center of mass, in the feature-space associated with the kernel
(Shawe-Taylor and Cristianini, 2004). Recall from Section 1.3.2 that a kernel function
k corresponds to a dot-product between the data mapped to a vector space F (the
so-called feature-space): k(x1, x2) = 〈φ(x1), φ(x2)〉. A distance in the feature-space is
therefore implicitly defined by the kernel function : dF(x1, x2) = ||φ(x1) − φ(x2)||2 =
k(x1, x1)+k(x2, x2)−2k(x1, x2). Our diversity criterion, for the subset S (of cardinality
nS), therefore writes as

D(S) =
1

nS

∑

i∈S

dF(xi,M),

5The kernels used actually correspond to the kernels used for the classification, i.e. the kernels
obtained after applying the -radial option of the GIST software to the original kernels.
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where M is the center of mass of S, that is M = 1
nS

∑

i∈S φ(xi), which leads to

D(S) =
1

nS

∑

i∈S

k(xi, xi) −
1

n2
S

∑

i,j∈S

k(xi, xj).

Table 2.8 reveals that the diversities of these different subsets are very similar.
Two main conclusions can be drawn from this observation. First, the fact the the
diversity of whole dataset equals that of the positive and negative subsets reveals
that the supports of these subsets largely overlap and indicates that the classification
problem is not trivial. Indeed, in a particularly simple configuration the diversities of
the positive and negative subsets would be significantly smaller than that of the dataset
as a whole: the two classes of compounds would be clearly separated in the chemical
space. Second, the fact that all these values are similar shows that this algorithm is
able to correctly classify data regardless of the class they belong to, nor their location
in the chemical space. This accounts for the fact that the method is indeed able to
handle non-congeneric datasets.

All Pos. Neg. Correct Correct & Pos. Correct & Neg.
pq = 0.1 0.862 0.849 0.864 0.854 0.826 0.860
pq = 0.2 0.868 0.856 0.870 0.860 0.834 0.864

Table 2.8: Diversity values for different subsets of the data, computed from the kernels
obtained using the tottering walks, the first iteration of the Morgan process, and two
different values of pq. All : whole dataset ; Pos. : positive compounds ; Neg. :
negative compounds ; Correct : correctly classified compounds ; Correct & Pos. :
correctly classified positive compounds ; Correct & Neg. : correctly classified negative
compounds.

Finally, we can note that Tables 2.6 and 2.7 compare quite favorably to the results
presented in Helma et al. (2004). Many configurations have been tested in Helma
et al. (2004), and the best model reported has an accuracy of 78.5%. With an op-
timal accuracy of 76%, the original graph kernel with SVM shows a slightly smaller
performance, but the extensions introduced here could raise this figure up to more
than 79%. Based on our pair of extensions, we have therefore been able to propose
models with state-of-the-art performance, and even models performing slightly better.
We can however note a slight difference between the two family of models: models
from Helma et al. (2004) tend to have a higher sensitivity, while ours show a better
specificity. This means that the models from Helma et al. (2004) will correctly classify
a larger fraction of the positive data, but this comes at the expense of a larger false
positive rate, whereas our models may miss sensibly more true positive data, but the
confidence in positive predictions is higher.
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2.5 Discussion and conclusion

Based on a recently introduced family of graph kernels, we validated in this paper the
graph kernel approach for SAR analysis. Experiments revealed in a consistent way
that optimal results are obtained when long walks are considered, and this insight is
worth to solve the problem of model parametrization. We introduced two extensions
to the general formulation, and showed they can actually improve the SAR models in
terms of accuracy of the predictions and/or computation times. These two extensions
are formulated as pre-processing steps of the algorithm and are therefore completely
modular. Moreover, they are based on general graph considerations, and we believe
they can be useful in other problems.

The fundamental difference between this approach and other SAR algorithms lies in
the fact that the step of feature selection inherent to all other methods is avoided here.
In this sense, these kernels provide a kind of universal way to compare molecules. To-
gether with the panel of kernel methods algorithms, this family of graph kernels could
be used straightaway to solve different SAR problems, such as clustering or regression
tasks for instance, which otherwise typically involve multiple feature selection tasks.
On top of that, since it deals with every molecular fragment of the molecules, this
model can benefit from structural patterns responsible for activity that have not been
discovered yet, and are therefore not included in the set of traditional descriptors. This
property however comes at the expense of the interpretability of the model, which has
a great interest in medicinal chemistry. Indeed, an interpretable model can give clues
to explain the causes of activity or non-activity, and therefore provide chemists with a
worthy feedback to carry out molecular optimization in a rational way. An important
challenge to the application of these graph kernels in chemoinformatics is to be able
to extract information from their infinite dimensional feature-space, and to formalize
it in terms of chemical knowledge.
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Appendix

Proof of Proposition 2

For any walk w = (v0, . . . , vn) ∈ WNT (G), let f(w) = (v′0, . . . , v
′
n) defined by (2.8). By

definition (2.6), (v′0, v
′
1) = (v0, (v0, v1)) ∈ EG′, and

(

v′i, v
′
i+1

)

= ((vi−1, vi), (vi, vi+1)) ∈
EG′ because vi+1 6= vi−1 for i > 0. Hence f(w) is a walk in G′. Moreover v′0 ∈ VG and
v′i ∈ EG by (2.8), hence f(w) ∈ W{VG}(G′) by (2.7).
Conversely, for any w′ = (v′0, . . . , v

′
n) ∈ W{VG}(G′), we have v′0 = v0 ∈ VG and by easy
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induction using the definition of edges (2.6), v′i = (vi−1, vi) ∈ EG with vi−1 6= vi+1.
Hence w′ = f(w) with w = (v0, . . . , vn) ∈ WNT (G), therefore f is surjective. By
definition of f (2.8), it is also clear that f(w) = f(w′) ⇒ w = w′. f is therefore a
bijection from WNT (G) onto W{VG}(G′).

Moreover, by definition of the labeling l′ on G′, we obtain for any w = (v0, . . . , vn) ∈
WNT (G):

l′(f(w)) = l′ (v0, (v0, v1), . . . , (vn−1, vn))

= l(v0)l(v1) . . . l(vn)

= l(w).

Proof of Theorem 3

From the definition of p′, for any w = (v0, . . . , vn) ∈ WNT (G), we obtain :

p′(f(w)) = p′ (v0, (v0, v1), . . . , (vn−1, vn))

= p′s(v0)p
′
t ((v0, v1)|v0)

n
∏

i=2

p′t ((vi−1, vi)|(vi−2, vi−1))

= ps(v0)pt(v1|v0)

n
∏

i=2

pt (vi|vi−2, vi−1)

= p(w).
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Chapter 3
Tree-pattern graph kernels

The pioneer graph kernels introduced in the previous chapter show how to map graphs
to an infinite-dimensional feature space indexed by linear subgraphs, and compute
an inner product in that space. The resulting graph kernels compare two graphs
through their common walks, weighted by a function of their lengths (Gärtner et al.,
2003) or by their probability under a random walk model on the graphs (Kashima
et al., 2004). While this representation might appear restrictive, these kernels led
to promising empirical results, often comparing to state-of-the-art approaches in the
fields of chemoinformatics (Mahé et al., 2005; Ralaivola et al., 2005) and bioinformatics
(Borgwardt et al., 2005; Karklin et al., 2005).

Nevertheless, Ramon and Gärtner (2003) highlighted the limited expressiveness
of graph kernels based on linear features, showing in particular that many different
graphs can be mapped to the same point in the corresponding feature space. Figure 3.1
illustrates this issue on a simple example. On the other hand, they also showed that
computing a perfect graph kernel, that is, a kernel mapping non-isomorphic graphs to
distinct points in the feature space, is NP-hard. This suggests that the expressiveness
of graph kernels must be traded for their computational complexity. As a first step to-
wards a refinement of the feature space used in walk-based graph kernels, Ramon and
Gärtner (2003) introduced a kernel function comparing graphs on the basis of their
common subtrees. This representation looks promising in particular in chemoinfor-
matics, because physicochemical properties of atoms are known to be related to their
topological environment that could be well captured by subtrees. However, the rela-
tionship between the new subtree-based kernel and previous walk-based kernels was
not analyzed in details, and the relevance of the new kernel was not tested empirically.

Our motivation in this chapter is to study in detail, both theoretically and empir-
ically, the relevance of subtree features for graph kernels, and in particular to assess
the benefits they bring compared to walk-based graph kernels. For that purpose we
first revisit the formulation introduced by Ramon and Gärtner (2003) and propose
two new kernels with an explicit description of their feature spaces and corresponding
inner products. We introduce a parameter in the formulations that allows to gradu-
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ally increase the complexity of the subtrees used as features to represent the graphs,
the notion of complexity depending on the formulation. By decreasing the parame-
ter we recover classical walk-based kernels, and by increasing it, we can empirically
observe in detail the effect of increasing the number and the complexity of the tree
features used to represent the graphs. Both formulations can be efficiently computed
by dynamic programming, in the spirit of the kernel proposed by Ramon and Gärtner
(2003). When the size of allowed subtrees is increased, however, we observe that the
practical use of this kernel is limited by the explosion in the number of subtrees oc-
curring in the graphs. In a second step, we therefore introduce two extensions to the
initial formulation of the kernels that allow, on the one hand, to extend and generalize
their associated feature space, and on the other hand, to remove noisy features that
correspond to unwanted subtrees. The different kernels are compared experimentally
on two binary classification tasks consisting in discriminating toxic from non-toxic
molecules with a SVM.

The remaining of the chapter is organized as follows. Notations and definitions
related to graphs and trees are introduced in Section 3.1, followed in Section 3.2 by
the definition of a general class of kernels based on the detection of common subtrees.
The next section (Section 3.3) revisits the framework introduced in Ramon and Gärtner
(2003), from which two particular graph kernels are derived and further extended in
Section 3.4. After a discussion about their implementation in Section 3.5, the kernels
are validated experimentally (Section 3.6), and we give concluding remarks in Section
3.7.

Figure 3.1: Two graphs having the same walk content, namely • : ×5 ; •→• : ×4
and •→•→• : ×2, and consequently mapped to the same point of the feature space
corresponding a kernel based on the count of walks (Gärtner et al., 2003).

3.1 Notations and definitions

In this section we introduce notations and general definitions related to graphs and
trees.

3.1.1 Labeled directed graphs

A labeled graph G = (VG, EG) is defined by a finite set of vertices VG, a set of edges
EG ⊂ VG×VG, and a labeling function l : VG ∪ EG → A which assigns a label l(x) taken
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from an alphabet A to any vertex or edge x. We let |VG| be the number of vertices of
G, |EG| be its number of edges, and we assume below that a set of labels A common
to all graphs has been fixed. In directed graphs, edges are oriented and to each vertex
u ∈ VG corresponds a set of incoming neighbors δ−(u) = {v ∈ VG : (v, u) ∈ EG} and
outgoing neighbors δ+(u) = {v ∈ VG : (u, v) ∈ EG}. We let d−(u) = |δ−(u)| be the
in-degree of the vertex u, and d+(u) = |δ+(u)| be its out-degree. A walk of length n in
the graph G = (VG, EG) is a succession of n+ 1 vertices (v0, . . . , vn) ∈ Vn+1

G , such that
(vi, vi+1) ∈ EG for i = 0, . . . , n − 1. A path is a walk (v0, . . . , vn) with the additional
condition that i 6= j ⇐⇒ vi 6= vj. Finally, a graph is said to be connected if there is
a walk between any pair of vertices when the orientation of edges is dropped.

For applications in chemistry considered below, we associate a labeled directed
graph G = (VG, EG) to the planar structure of a molecule. To do so, we let the set of
vertices VG correspond to the set of atoms of the molecule, the set of edges EG to its
covalent bonds, and label these graph elements according to an alphabet A consisting
of the different types of atoms and bonds. Note that since graphs are directed, a pair
of edges of opposite direction is introduced for each covalent bond of the molecule.
Figure 3.2 shows a chemical compound seen as a labeled directed graph.

v2

v3

v4

e1e1

e6
e5

e3

e2
e4v1H C

O

Cl

l

V, E , lG = ( )

Figure 3.2: A chemical compound seen as a labeled graph

3.1.2 Trees

A tree t is a directed connected acyclic graph in which all vertices have in-degree one,
except one that has in-degree zero. The node with in-degree zero is known as the root
r(t) of the tree. Nodes with out-degree zero are known as leaf nodes, others are called
internal nodes. Trees are naturally oriented, edges being directed from the root to the
leaves. The outgoing neighbors of an internal node are known as its children, and the
unique incoming neighbor of a node (apart from the root) is known as its parent. If
two nodes have the same parent, their are said to be siblings. The size |t| of the tree
t is its number of nodes: |t| = |Vt|. The depth of a node corresponds to the number of
edges connecting it to the root plus one1, and the depth of the tree is the maximum
depth of its nodes. Finally, we introduce a couple of definitions that will be useful in
the following.

1Note that the depth of the root node is one.
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Definition 5 (Balanced tree). A perfectly depth-balanced tree of order h is a tree
where the depth of each leaf node is h. Perfectly depth-balanced trees are also called
balanced trees below.

Definition 6 (Branching cardinality). We define the branching cardinality of the
tree t, noted branch(t), as its number of leaf nodes minus one. More formally, for the
tree t = (Vt, Et) with Vt = (v1, . . . , v|t|), branch(t) is given by;

branch(t) =

|t|
∑

i=1

1(d+(vi) = 0) − 1,

where 1(.) is a binary function equal to one if its argument is true, and zero otherwise.

This terminology stems from the observation that this quantity also corresponds
to the sum, over the non-leaf nodes of the tree, of their numbers of children minus one.
It therefore measures how many extra branchings there are compared to a linear tree,
which has branching cardinality 0. These definitions are illustrated in Figure 3.3.

Figure 3.3: Left: a tree t1 of depth 5 with |t1| = 9 and branch(t1) = 3. Right: a
balanced tree t2 of order 3 with |t2| = 8 and branch(t2) = 4. Top nodes are root nodes,
bottom nodes are leaf nodes.

The remaining of the paper introduces kernel functions between labeled directed
graphs based on the detection in the graphs of patterns corresponding to labeled trees.
To lighten notations, we simply refer below to labeled directed graphs and labeled
trees as graphs and trees.

3.2 Kernel definition

This section introduces a general class of graph kernel based on the detection, in the
graphs, of patterns corresponding to particular tree structures. We start by defining
precisely this notion of tree-pattern.
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Definition 7 (Tree-pattern). Let a graph G = (VG, EG) and a tree t = (Vt, Et), with

Vt = (n1, . . . , n|t|). A |t|-uple of vertices (v1, . . . , v|t|) ∈ V |t|
G is a tree-pattern of G with

respect to t, which we denote by (v1, . . . , v|t|) = pattern(t), if and only if the following
holds:











∀i ∈ [1, |t|], l(vi) = l(ni) ,

∀(ni, nj) ∈ Et, (vi, vj) ∈ EG ∧ l
(

(vi, vj)
)

= l
(

(ni, nj)
)

,

∀(ni, nj), (ni, nk) ∈ Et, j 6= k ⇐⇒ vj 6= vk .

In other words a tree-pattern is a combination of graph vertices that can be ar-
ranged in a particular tree structure, according to the labels and the connectivity
properties of the graph. Note from this definition that vertices of the graph are al-
lowed to appear several times in a tree-pattern, under the condition that siblings nodes
of the corresponding tree are associated to distinct vertices of the graphs. We now
introduce a functional to count occurrences of these patterns.

Definition 8 (Tree-pattern counting function). A tree-pattern counting function
returning the number of times a tree-pattern occurs in a graph is defined for the tree t
and the graph G = (VG, EG), VG = (v1, . . . , v|VG|), as

ψt(G) =
∣

∣

{

(α1, . . . , α|t|) ∈ [1, |VG|]|t| : (vα1 , . . . , vα|t|
) = pattern(t)

}∣

∣.

A restriction of ψt to patterns rooted in a specified vertex v is given by

ψ
(v)
t (G) =

∣

∣

{

(α1, . . . , α|t|) ∈ [1, |VG|]|t| : (vα1 , . . . , vα|t|
) = pattern(t) ∧ vα1 = v

}∣

∣.

With this new definition at hand we can define a general graph kernel based on the
detection of common tree-patterns in the graphs.

Definition 9 (Tree-pattern graph kernel). The tree-pattern graph kernel K is
given for the graphs G1 and G2 by

K(G1, G2) =
∑

t∈T

w(t)ψt(G1)ψt(G2),

where T is a set of trees, w : T → R is a tree weighting functional and ψt is the
tree-pattern counting function of Definition 8.

The kernel of Definition 9 is obviously positive definite since it can be written
as a standard dot-product K(G1, G2) = 〈φ(G1), φ(G2)〉, where φ(G) is the mapping
that maps any graph G to the feature space indexed by the trees of the set T as
φ(G) =

(√

w(t)ψt(G)
)

t∈T
. Figure 3.4 illustrates this mapping.

3.3 Examples of tree-pattern graph kernels

In a recent work, Ramon and Gärtner (2003) proposed a particular tree-pattern graph
kernel fitting the general Definition 9. In this section, we propose two different kernels
with explicit feature spaces and inner products, discuss their practical computation,
and highlight their differences with the kernel of Ramon and Gärtner (2003).
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Figure 3.4: A molecular compound G (left) and its feature space representation φ(G)
(right). Note that the red and green trees are balanced. Note moreover that the green
tree consists of a set of linearly connected atoms, which is known as molecular fragment
in chemoinformatics. Note finally that the same C atom appears in the 3rd and 5th
positions in the tree-pattern corresponding to the green tree.

3.3.1 Kernels definition

According to Definition 9, two key elements enter in the definition of a tree-pattern
graph kernel. Firstly, the set of trees T indexing the feature space the graphs are
mapped to must be chosen. The kernels we consider in this section are based on
the same feature space: the space indexed by the set of balanced trees of order h
introduced in Definition 5, labeled according to the graphs labeling alphabet A. We
will refer to this set as Bh in the following. Second, the tree weighting function w
must be defined. A natural way to define such a functional is to take into account the
structure of the trees, and accordingly, we propose to relate the weight of a tree to
its size or its branching cardinality. In particular we propose to consider the following
kernels:

Definition 10 (Size-based balanced tree-pattern kernel). For the pair of graphs
G1 and G2, the size-based balanced tree-pattern kernel of order h is defined as

Kh
Size

(G1, G2) =
∑

t∈Bh

λ|t|−hψt(G1)ψt(G2). (3.1)

Definition 11 (Branching-based balanced tree-pattern kernel). For the pair
of graphs G1 and G2, the branching-based balanced tree-pattern kernel of order h is
defined as

Kh
Branch

(G1, G2) =
∑

t∈Bh

λbranch(t)ψt(G1)ψt(G2). (3.2)
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Note that the depth of a tree is a lower bound on its size, attained for a tree con-
sisting of a linear chain of vertices. For such a tree, at depth h, we have |t| − h =
branch(t) = 0, and we see that the corresponding tree-patterns are given a unit weight
in the kernels of Definitions 10 and 11. The complexity of a tree naturally increases
with its size and branching cardinality, and the λ parameter entering the kernel Def-
initions 10 and 11 has the effect of favoring tree-patterns depending on their degree
of complexity. A value of λ greater than one favors the influence of tree-patterns of
increasing complexity over the trivial linear tree-patterns, while they are penalized by
a value of λ smaller than one. We can note, however, that while the size of a tree
increases with its branching cardinality, the converse is not true. For any tree t of
depth h, we therefore always have |t| − h ≥ branch(t), and the tree weighting is more
important in the size-based than in the branching-based kernel. In the case of balanced
trees, this difference is particularly marked when the nodes with large out-degree are
close to the root node. This is due to the fact that every leaf must be at depth h,
and while the size of the tree necessarily increases by at least h − 1 along each path
starting from the root, the branching cardinality does not2. The main difference in
the feature space representations of the graphs is therefore induced by this particular
type of tree-patterns, that can be interpreted as collections of regular subtree patterns
merged in the root node. This suggests for instance that, for λ < 1, the branching-
based formulation of the kernel may to some extent tolerate large, yet regular patterns,
that would be strongly penalized in the size-based formulation. Figure 3.5 illustrates
these tree weightings based on the size and branching cardinality.

λ  /  λ00 λ  /  λ34λ  /  λ12λ  /  λ11 λ  /  λ22 λ  /  λ24

Figure 3.5: A set of balanced trees of order 3, together with their size-based (left) and
branching-based (right) λ weighting.

When λ tends to zero, the complexity of the patterns is so penalized that only
tree-patterns consisting of linear chains of graph vertices have non-vanishing weights,
and the kernels of Definitions 10 and 11 boil down to a kernel based on the detection
of common walks (Gärtner et al., 2003). More formally, if we define the set of walks
of length n of the graph G as

Wn(G) = {(v0, . . . , vn) ∈ Vn+1
G : (vi, vi+1) ∈ EG, 0 ≤ i ≤ n− 1},

2At the extreme, we have |t| = 1 + (h − 1) × d+(r(t)) vs branch(t) = d+(r(t)) − 1.
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and define for the graphs G1 and G2 the following walk-count kernel:

Kn
Walk(G1, G2) =

∑

w1∈
Wn(G1)

∑

w2∈
Wn(G2)

1(l(w1) = l(w2)), (3.3)

where 1(l(w1) = l(w2)) is one if all pairs of corresponding edges and vertices are
identically labeled in the walks w1 and w2, and zero otherwise, one easily gets that:

lim
λ→0

Kh
Size(G1, G2) = lim

λ→0
Kh

Branch(G1, G2) = Kh−1
Walk(G1, G2).

Increasing the value of λ relaxes the penalization on complex subtree features, and can
therefore be interpreted as introducing tree-patterns of increasing complexity in the
walk-based kernel of Equation 3.3.

It should be noted finally that the parameters h and λ are directly related to
the nature of the features representing the graphs and to their relative importance.
Optimal values of the parameters are therefore likely to be dependent on the problem
and data considered, and can hardly be chosen a priori. As an example, because of
the variety of chemical compounds, the graphs considered in a chemical application
can have a great structural diversity. This suggests that these parameters should be
estimated from the data using, for example, cross-validation techniques.

3.3.2 Kernels computation

We now propose two factorization schemes to compute the kernels of Definitions 10
and 11. These factorizations are inspired by the dynamic programming (DP) algorithm
proposed by Ramon and Gärtner (2003) to compute a slightly different graph kernel,
discussed in the next subsection. The factorization relies on the following definition:

Definition 12 (Neighborhood matching set). The neighborhood matching set
M(u, v) of two graph vertices u and v is defined as

M(u, v) =
{

R ⊆ δ+(u) × δ+(v) |
(

∀(a, b), (c, d) ∈ R : a 6= c ∧ b 6= d
)

∧
(

∀(a, b) ∈ R : l(a) = l(b) ∧ l((u, a)) = l((v, b))
)}

.

Each R ∈ M(u, v) consists of one or several pair(s) of neighbors of u and v that are
identically labeled and connected to u and v by edges of the same label. It follows from
Definition 5 that such an element R corresponds to a pair of balanced tree-patterns of
order 2 rooted in u and v, found in the graph(s) u and v belong to. Moreover, provided
u and v have the same label, these patterns correspond to the same balanced tree. We
can state the following propositions, whose proofs are post-poned in Appendix 3.7:
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Proposition 13 (Size-based kernel computation). The order h size-based tree-
pattern kernel Kh

Size
of Definition 10 between two graphs G1 and G2 can be computed

as:

Kh
Size(G1, G2) =

1

λh

∑

u∈VG1

∑

v∈VG2

kh(u, v), (3.4)

where kn, n = 1, . . . , h is defined recursively by







k1(u, v) = λ1(l(u) = l(v)) ,

kn(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

kn−1(u
′, v′), n = 2, . . . , h.

Proposition 14 (Branching-based kernel computation). The order h branching-
based tree-pattern kernel Kh

Branch
of Definition 11 between two graphs G1 and G2 can

be computed as:

Kh
Branch

(G1, G2) =
∑

u∈VG1

∑

v∈VG2

kh(u, v), (3.5)

where kn, n = 1, . . . , h is defined recursively by











k1(u, v) = 1(l(u) = l(v)) ,

kn(u, v) = 1(l(u) = l(v))
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkn−1(u
′, v′), n = 2, . . . , h.

Not surprisingly, Propositions 13 and 14 show that the kernels Kh
Size and Kh

Branch

of Definitions 10 and 11 have the same complexity. More precisely, for the pair of
graphs G1 and G2, it follows from (3.4) and (3.5) that this complexity is equal to the
product of the sizes of G1 and G2, times the complexity of evaluating the functional
kh. In both cases, for the pair of graph vertices u and v, evaluating kh(u, v) amounts to
summing, over all possible matching of neighbors R ∈ M(u, v), a quantity expressed
as a product of |R| functionals kh−1. The size of M(u, v), |M(u, v)|, is maximal if
all the neighbors of u and v, as well as the edges that connect them to u and v, are
identically labeled. In that case we have

|M(u, v)| =
min(d+(u),d+(v))

∑

k=1

Ak
d+(u)A

k
d+(v),

where k ranges over the cardinality |R| of the set of matching neighbors. If we let d
be an upper bond on the out-degree of the vertices of the graphs considered, it follows
that |M(u, v)| ≤

∑d
k=1(A

k
d)

2 and we can derive the following worst case complexity

O(Kh
Size(G1, G2)) = O(Kh

Branch(G1, G2)) = |VG1 | × |VG2 | × (
d
∑

k=1

k(Ak
d)

2)h−1.
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In the case of chemical compounds, we have d = 4. The factor
∑d

k=1 k(A
k
d)

2 equals
4336, and the complexity looks prohibitive. However this is only a worst-case com-
plexity which is strongly reduced in practice because (i) the out-degree of the vertices
is often smaller than 43, and (ii) the size of M(u, v) is reduced by the fact that vertices
and edges can have distinct labels.

3.3.3 Relation to previous work

At this point, it is worth reminding the kernel formulation introduced by Ramon
and Gärtner (2003) in order to highlight the differences with the kernels proposed
in Definitions 10 and 11. In the context of graphs with labeled vertices and edges4,
at order h, the kernel introduced in Ramon and Gärtner (2003), that we denote by
Kh

Ramon, is formulated as follows:

Kh
Ramon(G1, G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v),

where kn is defined by






k1(u, v) = 1(l(u) = l(v))

kn(u, v) = 1(l(u) = l(v)) λuλv

∑

R∈M(u,v)

∏

(u′,v′)∈R

kn−1(u
′, v′), n = 2, . . . , h.

It is clear that this kernel and the kernels of Definitions 10 and 11 have the same feature
space. The main difference lies in the fact that in this formulation, a parameter λv

is introduced for each vertex v of each graph. It can be checked that under this
parametrization, each tree-pattern is weighted by the product of the parameters λv

associated to its internal nodes. In the special case where these parameters are taken
equal to a single parameter λ, each pattern is therefore weighted by λ raised to the
power of its number of internal nodes. While this bears some similarity with the
size-based weighting proposed in the kernel of Definition 10, we note for instance that
the three leftmost trees of Figure 3.5 are identically weighted, namely by a factor λ2.
Moreover, the convergence to the walk-based kernel of Equation 3.3 observed when λ
tends to zero for the kernels of Definition 10 and 11 does not hold with this formulation.

3.4 Extensions

The kernels introduced in the previous section arise directly from the adaptation of
the algorithm proposed in Ramon and Gärtner (2003). In this section we introduce

3For example, in the two datasets considered in our experiments in section 3.6, the average out-
degree of the vertices is nearly 2 (2.14 for the first dataset, and 2.06 for the second one).

4The original formulation considered graphs with labeled vertices only, and the definition of the
neighborhood matching set is refined in this paper in order to handle labeled edges.
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two extensions to this initial formulation. First, we extend the branching-based kernel
of Definition 11 to a feature space indexed by a larger, and more general, set of trees.
Second, we propose to eliminate a set of noisy tree-patterns from the feature space.

3.4.1 Considering all trees

The DP algorithms of Section 3.3.2 recursively extend the tree-patterns under con-
struction until they reach a specified depth. Because they are based on the notion
of neighborhood matching sets introduced in Definition 12, these algorithms add at
least one child to every leaf node of the patterns under extension at each step of the
recursive process. When they reach the specified depth, the patterns are therefore
balanced, and the choice of the feature space associated to the kernels of Definitions
10 and 11 was actually dictated by their computation.

Rather than focusing on features of a particular size, standard representations of
molecules involve structural features of different sizes. A prominent example is that
of molecular fingerprints (Ralaivola et al., 2005) that typically represent a molecule
by its exhaustive list of fragments of length up to 8, where a fragment is defined as
a linear succession of connected atoms (see Figure 3.4). In this section, we note that
a slight modification of the DP algorithm of Proposition 14 generalizes the kernel of
Definition 11 to a feature space indexed by the set of general trees up to a given depth,
instead of the set of balanced-trees of the corresponding order. More precisely, if we
let Th be the set of trees of depth up to h, and if we define the until-N extension of
the branching-based kernel of Definition 11 as

Kuntil-h
Branch(G1, G2) =

∑

t∈Th

λbranch(t)ψt(G1)ψt(G2), (3.6)

we can state the following proposition, whose proof is postponed in Appendix 3.7.

Proposition 15 (Until-N kernel computation). The until-N extension Kuntil-h
Branch

of
the branching-based kernel of order h of Definition 11 is given for the graphs G1 and
G2 by

Kuntil-h
Branch

(G1, G2) =
∑

u∈VG1

∑

v∈VG2

kh(u, v),

where kn, n = 1, . . . , h is defined recursively by















k1(u, v) = 1(l(u) = l(v)) ,

kn(u, v) = 1(l(u) = l(v))



1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkn−1(u
′, v′)



 , n = 2, . . . , h.

The computation given in Proposition 15 follows that of Proposition 14, and this
until-N extension comes at no extra cost. The feature space corresponding to this ex-
tended kernel has nevertheless a much larger dimensionality than that of the original
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branching-based kernel. Actually, because the set of trees Th includes the set of bal-
anced trees Bh as a special case, the feature space associated to the branching-based
kernel is a sub-space of the feature space associated to its until-N extension. Figure 3.6
illustrate the different mappings. The behavior of this kernel with respect to λ follows
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Figure 3.6: A graph G, and the set of balanced trees of order 3 (left) and general trees
of depth up to 3 (right) for which a tree-pattern rooted in the dashed vertex is found
in G, together with their kernel weighting λbranch(t).

that of the original branching-based kernel. In particular, when λ tends to zero, the
set of tree-patterns with non-vanishing weights reduces to linear chain of vertices and
the kernel boils down to a kernel based on the detection of common walks of length
up to h− 1. More formally, one can easily check that, in this case:

lim
λ→0

Kuntil-h
Branch(G1, G2) =

h−1
∑

n=0

Kn
Walk(G1, G2),

where Kn
Walk is the kernel based on the detection of common walks of length n, defined

in Section 3.3.1, Equation 3.3.
Finally, we note that this extension is not directly applicable to the size-based kernel

of Definition 10 because of a slight difference in the computations of Propositions 13
and 14. Indeed, note from Proposition 13 that in order to get the λ|t|−h weighting of
the tree t proposed in Definition 10, the size-based kernel is initially computed from
patterns weighted by their sizes, and is subsequently normalized by a factor λ−h. As
a result, while the above extension would still have the effect of extending the feature



3.4. EXTENSIONS 83

space to the space indexed by trees of Th, this λ−h normalization would affect every
tree-pattern regardless of their size, and the pattern weighting proposed in Definition
10 would be lost.

3.4.2 Removing tottering tree-patterns

The DP algorithms of Sections 3.3.2 and 3.4.1 enumerate balanced tree-patterns of
order h through the recursive extension of balanced tree-patterns of order 2 defined by
neighborhood matching sets of pairs of vertices. According to Definition 12, the whole
sets of neighbors of a pair of vertices enter in the definition of their neighborhood
matching sets. As a result, it can be the case in a tree-pattern that a vertex appears
simultaneously as the parent and a child of a second vertex. This phenomenon is
the tree counterpart of a phenomenon observed in the context of walk-based graph
kernels, where a random walk under extension could return to a visited vertex just
after leaving it. This behavior was called tottering in Mahé et al. (2005), and following
this terminology, we refer to a tree-pattern in which a vertex appears simultaneously
as the parent and a child of a second vertex as a tottering tree-pattern. Figure 3.7
illustrates the tottering phenomenon.
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Figure 3.7: Left: tottering (red) and no-tottering (blue) walks. Right: tottering (red)
and no-tottering(blue) tree-patterns.

In many cases these tree-patterns are likely to be uninformative features. In par-
ticular they are not proper subgraphs of the initial graphs. Even worse, the ratio of
the number of tottering tree-patterns over the number of non-tottering tree-patterns
quickly increases with the depth h of the trees, suggesting that informative patterns
corresponding to deep trees might be hidden by the profusion of tottering tree-patterns.
In order to tackle this issue we now adapt an idea of Mahé et al. (2005) to filter out
these spurious tottering tree-patterns in the kernels presented in Sections 3.2 and 3.3.
Tottering can be prevented by adding constraints in the tree-pattern counting function,
according to the following definition.
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Definition 16 (No-tottering tree-pattern counting function). From the tree-
pattern counting function of Definition 8, a no-tottering tree-pattern counting function
can be defined for the tree t = (Vt, Et), with Vt = (n1, . . . , n|t|), and the graph G =
(VG, EG), with VG = (v1, . . . , v|VG|), as

ψNT
t (G) =

∣

∣

{

(α1, . . . , α|t|) ∈ [1, |VG|]|t| : (vα1 , . . . , vα|t|
) = pattern(t)

∧ (ni, nj), (nj, nk) ∈ Et ⇐⇒ αi 6= αk

}∣

∣.

Following Definition 9, a graph kernel based on no-tottering tree-patterns can be
defined from this no-tottering tree-pattern counting function.

Definition 17 (No-tottering tree-pattern kernel). A graph kernel KNT based on
no-tottering tree-patterns is given for the graphs G1 and G2 by

KNT (G1, G2) =
∑

t∈T

w(t)ψNT
t (G1)ψ

NT
t (G2), (3.7)

where T is a set of trees, w : T → R is a tree weighting functional and ψNT
t is the

no-tottering tree-pattern counting function of Definition 16.

This latter definition therefore extends the tree-pattern kernel of Definition 9 to the
no-tottering case. However, due to the additional constraints on the set of acceptable
patterns, the DP framework based on neighborhood matching set described in Sections
3.3.2 and 3.4.1 does not hold any longer. In Mahé et al. (2005), the following graph
transformation was introduced in order to filter tottering walks.

Definition 18 (Graph transformation). For a graph G = (VG, EG), we let its
transformed graph G′ = (VG′ , EG′) be defined by:

• VG′ = VG ∪ EG,

• EG′ = {(v, (v, t)) |v ∈ VG, (v, t) ∈ EG} ∪ {((u, v) , (v, t)) | (u, v) , (v, t) ∈ EG, u 6= t},
and labeled as follows:

• for a node v′ ∈ VG′ the label is either l(v′) = l(v′) if v′ ∈ VG, or l(v′) = l(v) if
v′ = (u, v) ∈ EG,

• for an edge e′ = (v′1, v
′
2) between two vertices v′1 ∈ VG ∪EG and v′2 ∈ EG, the label

is simply given by l(e′) = l(v′2).

This graph transformation is illustrated in Figure 3.8 for the graph corresponding to
the chemical compound of Figure 3.2. Based on this graph transformation, Mahé et al.
(2005) proved that there is a bijection between the set of no-tottering walks of a graph
and the set of walks of its transformed graph that start on a vertex corresponding
to a vertex of the original graph. In a similar way, we show below that there is a
bijection between the set of no-tottering tree-patterns found in a graph and the set
of tree-patterns found in its transformed graph rooted in a vertex corresponding to a
vertex of the original graph. This is summarized in the following proposition, which
proof is postponed in Appendix 3.7.
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Figure 3.8: The graph transformation. I) The original molecule. II) The corresponding
graph G = (VG, EG). III) The transformed graph. IV) The labels on the transformed
graph. Note that different widths stand for different edges labels, and gray nodes are
the nodes belonging to VG.

Proposition 19. If we let G′
1 (resp. G′

2) be the transformed graph of G1 (resp. G2),
the no-tottering tree-pattern kernel of Definition 17 is given by

KNT (G1, G2) =
∑

t∈T

w(t)ψNT
t (G1)ψ

NT
t (G2)

=
∑

t∈T

w(t)ψ
{VG1

}
t (G′

1)ψ
{VG2

}
t (G′

2),

where, if G′ is the transformed graph of G given by Definition 18, VG ⊂ VG′ is the set

of vertices of G′ corresponding to the vertices of G, and ψ
{v1,...,vn}
t (G) =

n
∑

i=1

ψ
(vi)
t (G).

This proposition shows that we can compute no-tottering extensions of the kernels
of Definitions 10 and 11, and of the until-N kernel extension of Equation 3.6, using the
graph transformation of Definition 18 and the original DP algorithms of Sections 3.3.2
and 3.4.1. However, this operation comes at the expense of an increase in the cost of
computing the kernel. More precisely, by definition of the graph transformation, we
have |VG′ | = |VG| + |EG|. Moreover, as noticed by Mahé et al. (2005), the maximum
out-degree of the vertices of the transformed graph is equal to that of the original
graph. As a result, the worst case complexity of evaluating the functional kh(u, v) of
Propositions 13, 14 and 15 is the same if u and v belong to VG′

1
and VG′

2
, or VG1 and

VG2 . It follows that for the graphs G1 and G2 we have

O
(

KNT (G1, G2)
)

=
(|VG1| + |EG1|)(|VG2| + |EG2|)

|VG1||VG2|
O
(

K(G1, G2)
)

,
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where K is one of the kernels given in Equations 3.1, 3.2 and 3.6, and KNT is its
no-tottering extension of Definition 17.

3.5 Implementation

In this section we detail the implementation of the original size-based and branching-
based kernel computations given Propositions 13 and 14, and of the extensions of
Section 3.4. The original size-based and branching-based kernels are computed by a
DP algorithm that consists, for the pair of graphsG1 andG2 with VG1 = {v1, . . . , v|VG1

|}
and VG2 = {u1, . . . , u|VG2

|}, in computing a set of h, initially null, matrices M1, . . . ,Mh

of size |VG1| × |VG2 | defined by Mn[i, j] = kn(vi, uj). The corresponding kernel K
is then obtained by summing the entries of the matrix Mh, that is K(G1, G2) =
|VG1

|
∑

i=1

|VG2
|

∑

j=1

Mh[i, j].

From Propositions 13 and 14, the matrix M1 is obtained directly by setting to λ, for
the size-based kernel, or 1, for the branching-based kernel, the entries corresponding to
pairs of vertices identically labeled. For n = 2, . . . , h, the matrix Mn can be obtained
from the matrix Mn−1 using the following computation. For each pair of vertices
vi ∈ VG1 and uj ∈ VG2 such that l(vi) = l(uj):

• for d = 1, . . . ,min(d+(vi), d
+(uj)):

– compute N1, the set of possible arrangements of d neighbors of vi

– compute N2, the set of possible arrangements of d neighbors of uj

– for each pair of arrangements (n1, . . . , nd) ∈ N1 and (n′
1, . . . , n

′
d) ∈ N2:

∗ if l(nk) = l(n′
k) ∧ l((vi, nk)) = l((uj, n

′
k)), k = 1, . . . , d:

# that is, if the pair of arrangements respects the constraints of M(vi, uj)

· for the size-based kernel :
Mn[i, j] += λ

∏d
k=1Mn−1[ind(nk), ind(n′

k)]

· for the branching-based kernel :
Mn[i, j] += λd−1

∏d
k=1Mn−1[ind(nk), ind(n′

k)]
# where, for the vertex n of the graph G, ind(n) returns the index
of n in VG

In the case of the size-based kernel, the entries ofMh must eventually be normalized
by a factor λ−h before they are summed to return the kernel.

This pseudo-code implements the computations of Propositions 13 and 14. How-
ever, we added to this implementation an extra constraint in the definition of the
neighborhood matching set. Instead of simply requiring that matching arrangements
of neighbors consist of pairs of identically labeled vertices and edges, we also require
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that their vertices follow a topological order. This has the effect of preventing repeti-
tions of dimensions of the feature space indexed by trees identical up to a permutation
of their sets of sibling nodes. In the case where vertices correspond to atoms, a natural
ordering is defined by their atomic number, and, as a result, we replaced the condition

if l(nk) = l(n′
k) ∧ l((vi, nk)) = l((uj, n

′
k)), k = 1, . . . , d

in the above pseudo-code by

if l(nk) = l(n′
k) ∧ l((vi, nk)) = l((uj, n

′
k)), k = 1, . . . , d

∧ AN(nk) < AN(nk+1), k = 1, . . . , d− 1,

where AN(v) returns the (integer) atomic number corresponding to the atom type
encoded in the label of the vertex v. As a result, sibling nodes in the trees indexing
the feature space are ordered according to their atomic number, which limits the di-
mensionality of the feature space. This is illustrated in Figure 3.9.
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Figure 3.9: A set of balanced trees identical up to permutations of their sets of sibling
nodes. Note that AN(C) = 14, AN(N) = 15 and AN(O) = 16. The tree in the
center (resp. right) does not respect the topological ordering because of the set of
sibling nodes (N,C) at depth 2 (resp. (O,C) at depth 4). The leftmost tree respects
the atomic number ordering and is therefore the only one, among these three trees, to
index the feature space.

The extensions to this initial formulation introduced in Sections 3.4.1 and 3.4.2 are
easily included in this computation. In the above pseudo-code, the until-N extension
simply consists in adding 1 to Mn[i, j] after the loop on the size d of potential matching
sets of neighbors. As for the no-tottering extension, it formulates as a preprocessing
step of graph transformation, after which the above pseudo-code can be applied based
on the transformed graphs. However, in that case, the summation of the matrix Mh

returning the kernel must be restricted to the entries corresponding to the pairs of
vertices of the transformed graphs that are associated to the vertices of the original
ones.
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This implementation is clearly not optimal, but in practice, because the average
out-degree of the graphs we consider in the applications of the next section is roughly
two, computations times were acceptable. Many room is nevertheless left for improve-
ment, in particular in the way of matching the neighbors of a pair of vertices. Indeed,
instead of exhaustively list all possible combinations of neigbhors of each vertex, and
then evaluate their pairwise matching, it should be possible to directly define their
neighborhood matching set, according to Definition 12. Note finally that this algo-
rithm was implemented in C++ and is available within the open-source ChemCpp
toolbox5, dedicated to the computation of kernel functions between molecular com-
pounds.

3.6 Experiments

We now turn to the experimental section. The problem we consider is a binary classifi-
cation task consisting in discriminating toxic from non-toxic molecules. Our main goal
is to assess the relevance of tree-patterns graph kernels over their walk-based counter-
parts for this type of chemical applications. To do so, recall from section 3.3.1 that in
the proposed kernels, the influence of the tree-patterns is controlled by the parameter
λ. When λ tends to zero, the kernels converge to kernels based on the count of common
walks in the graphs (Gärtner et al., 2003). For increasing λ, tree-patterns of increas-
ing complexity are taken into account with increasing weight in the kernels. One can
therefore study the relevance of tree-patterns by studying how the performance of the
kernels evolves with λ > 0, and checking whether it improves over their walk-based
counterpart obtained for λ = 0.

The first step towards this goal is to evaluate the kernels of Definitions 10 and 11,
and therefore the original formulation presented in Ramon and Gärtner (2003). In a
second step, we want to validate the extensions to these kernels proposed in sections
3.4.1 and 3.4.2. On the one hand we will compare the results obtained with the until-N
extension of the branching-based kernel (3.6) to its initial formulation (3.2), and on the
other hand we will compare the results obtained with the no-tottering extensions (3.7)
of the size-based, branching-based, and until-N branching-based kernels to their origi-
nal formulations. Because our interest here is to get insights about the behavior of the
different kernels, we report experimental results for varying values of the parameters
entering their definition, namely the order h of the patterns, and the pattern weighting
parameter λ. In real-world applications one should of course design a procedure to
select the best parameters from the date.

The classification experiments described below were carried out with a support
vector machine based on the different kernels tested. Each kernel was implemented in
C++ within the open-source ChemCpp toolbox, and we used the open-source Python
machine learning package PyML6 to perform SVM classification. The SVM prediction

5Available at http://chemcpp.sourceforge.net
6Available at http://pyml.sourceforge.net
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is obtained by taking the sign of a score function. However, by varying this zero decision
threshold, it is possible to compute the evolution of the true positive rate versus the
false positive rate in a curve known as the Receiver Operating Characteristic (ROC)
curve. The area under this curve, known as AUC for Area Under the ROC Curve, is
often considered to be a safer indicator of the quality of a classifier than its accuracy
(Fawcett, 2003), being 1 for an ideal classifier, and 0.5 for a random classifier. The
results presented below are averaged AUC values obtained for 10 repetitions of a 5-
fold cross-validation process. Within each cross-validation fold, the ”C” soft-margin
parameter of the SVM was optimized over a grid ranging from 10−3 to 103, using an
internal cross-validation method implemented in PyML.

We considered two public datasets of chemical compounds in our experiments.
Both gather results of mutagenicity assays, and while the first one (King et al., 1996)
is a standard benchmark for evaluating chemical compounds classification, the second
one (Helma et al., 2004) was introduced more recently. The first dataset contains
188 chemical compounds tested for mutagenicity on Salmonella typhimurium. The
molecules of this dataset belong to the family of aromatic and hetero-aromatic ni-
tro compounds, and they are split into two classes: 125 positive examples with high
mutagenic activity (positive levels of log mutagenicity), and 63 negative examples
with no or low mutagenic activity. The second database considered consists of 684
compounds classified as mutagens or non-mutagens according to a test known as the
Salmonella/microsome assay. This dataset is well balanced with 341 mutagens com-
pounds for 343 non-mutagens ones. Note that although the biological property to be
predicted is the same, the two datasets are fundamentally different. While King et al.
(1996) focused on a particular family of molecules, this dataset involves a set of very
diverse chemical compounds, qualified as noncongeneric in the original paper. To pre-
dict mutagenicity, the model therefore needs to solve different tasks : in the first case
it has to detect subtle differences between homogeneous structures, while in the second
case it must seek regular patterns within a set of structurally different molecules.

3.6.1 First dataset

Tree-patterns Vs walk-patterns:
Figure 3.10 shows the results obtained for the size-based (left) and branching-based
(right) kernels of Definitions 10 and 11. Each curve represents the evolution, for
0 ≤ λ ≤ 1, of the AUC obtained from patterns of a given order h taken between 2 and
10.

Because the corresponding AUC values start by increasing with λ, we can note from
Figure 3.10 (left) that the introduction of tree-patterns is beneficial to the size-based
kernel for patterns of order greater than two. In the case of the branching-based kernel,
Figure 3.10 (right) suggests that this is only true for patterns of order greater than 2
and smaller than 6, but Figure 3.11 shows that, based on smaller values of λ, this is
still the case for patterns up to order 7. Taken together, Figures 3.10 and 3.11 show
that the optimal AUC values obtained with the size- and branching-based kernels for
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patterns of order 2 to 7 are globally similar. Interestingly however, the corresponding
λ values are systematically smaller in the case of the branching-based kernel. This is
due to the fact that, as noted in section 3.3.1, the size-based penalization is stronger
than the branching-based penalization. As a result, optimal λ values observed using
the size-based kernel are shifted towards zero using the branching-based kernel.

We can also note from Figures 3.10 and 3.11 that optimal values of λ tend to
decrease for increasing h. This is probably due to the fact that the number of tree-
patterns increases exponentially with h, and, as a result, the kernels need to limit their
individual influence. Actually, we observe that higher order patterns, with h > 7, can
only be considered for sufficiently small values of λ. For example, we note that the
size-based kernel computation does not converge if we consider patterns of order 10
and λ greater than 0.15. In the case of branching-based kernel, due to the weaker
pattern penalization, this phenomenon is even emphasized, and in that case, 10−4 is
the largest value acceptable for λ. This difference in the way to penalize the patterns
probably explains the fact that while a slight improvement over the walk-based kernel
can be observed in the case of the size-based kernel when h is greater than 7 (Figure
3.10, left), the performance systematically decreases with the branching-based kernel
(Figure 3.11).

Additionally, we note that because the size- and branching-based penalization of
balanced trees of order 2 is the same, the results obtained for h = 2 are identical with
the two kernels. Surprisingly however, no improvement over the walk-based baseline
is observed, which suggests that in this case, the tree-patterns do not bring additional
information to that contained in the walk features, that consist here of simple pairs of
connected atoms.

In conclusion, these experiments demonstrate the improvement of the tree-patterns
graph kernels over their walk-based counterparts. The impact of the tree-patterns is
particularly marked for patterns of order 3 and 4, where the two kernels improve by
more than 3% the AUC of the corresponding walk-based kernel. For patterns of in-
creasing order, this figure gradually decreases, and for patterns of order greater than
7, it drops to 1 % in the case of the size-based kernel, while no more improvement is
observed with the branching-based kernel. In both cases, optimal results are obtained
for patterns of order 4, with AUC values of 95.3% and 95.0%. Finally, it is worth
noting the combinatorial explosion in the number of patterns for large orders, which
in practice limits the acceptable values of λ to small values.

Until-N extension:
Figure 3.12 presents the results of the until-N extension (3.6) of the branching-based
kernel (3.2). The figure on the left-hand side, showing the evolution of the AUC for
2 ≤ h ≤ 10 and 0 ≤ λ ≤ 1, corresponds to that on the right-hand side of Figure 3.10.
The figure on the right-hand side plots these AUC values versus corresponding values
obtained using the original kernel (3.2).

We can first notice strong similarities between the curve in the left-hand side and
its original kernel counterpart. This is confirmed in the right-hand curve where all the
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Figure 3.10: First dataset. Evolution of the AUC with respect to λ at different orders
h. Left: size-based kernel (3.1) ; Right: branching-based kernel (3.2).

points lie near the diagonal line that represents the equivalence between the two kernels.
The fact that the differences between the two kernel formulations are barely noticeable
is quite surprising since their associated feature spaces are intuitively quite different.
In section 3.4.1, we mentioned that the feature space associated to the branching-based
kernel is actually a subspace of the feature space associated to its until-N extension. As
a result, Figure 3.12 suggests that the extra features related to the until-N extension do
not bear additional information into the kernel. This hypothesis seems to be confirmed
by the fact that the differences between corresponding walk-based kernels, observed
for λ = 0, are not significant neither. This might be explained by the fact that the
dimensions of the corresponding feature space are probably strongly correlated due to
the relation of inclusion existing between trees and walks patterns of orders n, and
those of order n + 1. Another possible explanation for the lack of improvement of
the until-N extension lies of course in the difficulty of learning in high dimension,
suggesting that discriminating patterns of a given order are lost within the flood of
patterns of greater orders taken into account by this until-N extension.

No-tottering extension:
Figures 3.13, 3.14 and 3.15 respectively show the results of the no-tottering extension
(3.7) of the size-based (3.1), branching-based (3.2), and until-N branching-based ker-
nels (3.6). The curves on the left-hand side show the evolution of AUC for 2 ≤ h ≤ 10
and 0 ≤ λ ≤ 1, and the curves on the right-hand side plot these AUC values versus
corresponding values obtained using the original kernels.

If we compare the results of the no-tottering extensions of the size-based and
branching-based kernels (Figures 3.13 and 3.14), we can first note that the the in-
troduction of tree-patterns is now systematically beneficial for h > 2 in both cases.
Moreover, we note that the kernel computations remain feasible for h = 10 and λ = 1,
which means that the no-tottering extension limits the combinatorial explosion we ob-
served with the original formulation. While optimal results were obtained for h = 4
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Figure 3.11: First dataset, branching-based kernel (3.2) . Evolution of the AUC at
different orders h for small values of λ.

using the original kernels, we observe that here, in both cases, the performance grad-
ually increases from h = 3 to an optimum value obtained for h = 8. At a given order,
we note that the optimal AUC values obtained with the two kernels are similar, and
that the corresponding λ value is smaller in the case of the branching-based kernel,
which is consistent with the observations made in the previous section. Optimal AUC
values are close to 96.5% and improve over the values around 95% observed with the
initial formulation. Importantly, we note that these optimal values are obtained using
parametrizations of the kernels that lead to a combinatorial explosion in their initial
formulation. Finally, from the fact that almost all points lie above the diagonal in
the right-hand curves, we can draw the conclusion that the no-tottering extension has
almost consistently a positive influence on the classification in both cases. It is worth
noting however that, even though the introduction of no-tottering tree-patterns was
shown to be beneficial, part of the overall improvement over their tottering counter-
parts is due to the no-tottering extension itself, since no-tottering walk-based kernels,
observed for λ = 0, already improve significantly over their tottering counterparts,
especially for high order patterns.

We now turn to Figure 3.15 and the no-tottering extension (3.7) of the until-N
branching-based kernel (3.6). We can first notice that conclusions similar to those
related to the no-tottering extension of the branching-based kernel can be drawn: an
improvement over the corresponding walk-based kernel is systematically observed for
tree-patterns of order greater than 2, the kernel behaves more nicely (no combinatorial
explosion), and the no-tottering extension consistently improves over the initial until-N
branching-based kernel (right-hand curve). Interestingly however, we note that optimal
results obtained for 4 ≤ h ≤ 10 tend to converge to an optimal value around 95.5%
(between 95.3 and 95.9%) for a λ value around 0.05. While this global optimum is
not as good as the overall optimal result obtained with the no-tottering branch-based
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Figure 3.12: First dataset, until-N extension. Left: evolution of the AUC with respect
to λ at different orders h, for the until-N extension (3.6) of the branching-based kernel
(3.2). Right: AUC values Vs original AUC values.

kernel (Figure 3.14), it still remains competitive (95.5% Vs 96.5%). This observation
contrasts with the the results obtained with the until-N extension in the tottering
case, where patterns of a given order seemed to be lost in the amount of patterns
of greater orders taken into account by the kernel. This is due to the fact the the
no-tottering extension limits the number of patterns to be detected, and suggests that
patterns of different orders can now be considered simultaneously in the kernel. This
fact therefore suggests that in the no-tottering case, the until-N extension can help
solving the problem of pattern order selection by taking a maximal pattern order large
enough (here, h > 4).
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Figure 3.13: First dataset. Left: evolution of the AUC with respect to λ at different
orders h for the no-tottering extension (3.7) of the size-based kernel (3.1). Right:
no-tottering AUC values Vs original AUC values.
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Figure 3.14: First dataset. Left: evolution of the AUC with respect to λ at different
orders h for the no-tottering extension (3.7) of the branching-based kernel (3.2). Right:
no-tottering AUC values Vs original AUC values.
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Figure 3.15: First dataset. Left: evolution of the AUC with respect to λ at different
orders h for the no-tottering extension (3.7) of the until-N branching-based kernel
(3.6). Right: no-tottering AUC values Vs original AUC values.
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3.6.2 Second dataset

In this section, we apply the same analysis to the second dataset.

Tree-patterns Vs walk-patterns:
Figure 3.16 shows the results obtained with the original size-based (3.1) and branching-
based (3.2) kernels. Several observations are consistent with those we drew with the
fist dataset. First, the introduction of tree-patterns has in both cases a positive influ-
ence on the classification, and is particularly marked for patterns of limited order (up
to a relative improvement of 12% for h = 2, and 4.5% for h = 3). Moreover, optimal
values of the λ parameter are smaller in the case of the branching-based kernel, they
decrease for increasing h, and quickly lead to a combinatorial explosion for high-order
patterns. Finally, we note that, in both cases, optimal AUC values are around 84%,
and are obtained for patterns of order 3 and 4, which is similar to the optimal order
observed for the first dataset. However, we can note the interesting difference that
here, tree-patterns of order 2 improve dramatically the results over their walk coun-
terparts, which suggests that different molecular features are to be detected in both
datasets.
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Figure 3.16: Second dataset. Evolution of the AUC with respect to λ at different
orders h. Left: size-based kernel (3.1) ; Right: branching-based kernel (3.2).

Until-N extension:
Figure 3.17 shows the results obtained with the until-N extension (3.6) of the branching-
based kernel (3.2). Here again, observations are consistent with the first dataset. In
particular, we can note that the results obtained with and without the until-N ex-
tension are very similar, and this fact is even more pronounced here. This second
evidence confirms that the until-N extension is of little use in the original formulation
of the kernel, most probably because patterns of a given order are drowned within the
amount of patterns of greater orders.
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Figure 3.17: Second dataset, until-N extension. Left: evolution of the AUC with
respect to λ at different orders h for the until-N extension (3.6) of the branching-based
kernel (3.2). Right: AUC values Vs original AUC values.

No-tottering extension:
Figure 3.18, 3.19 and 3.20 respectively present the results of the no-tottering extension
(3.7) of the size-based (3.1), branching-based (3.2), and until-N branching-based (3.6)
kernels.

Several observations are consistent with the first dataset. We can likewise note
that with the no-tottering extension, the introduction of tree-patterns is systematically
beneficial in both kernels. Moreover, at a given order, optimal results observed with the
two kernels are similar, and the corresponding λ value is smaller with the branching-
based kernel. Finally, the no-tottering extension limits the combinatorial explosion of
the kernels computation.

There is however a striking difference because results are optimal here for patterns
of order 3, patterns of order 2 rank second, and the results gradually decrease for orders
greater than 3. This behavior is exactly opposite to the one we observed with the first
dataset, where results gradually increased with the order of the patterns and were
optimal for patterns of order 8. This therefore tends to confirm that distinct features
are to be detected within the two datasets, and can be explained by the fact that the
compounds are structurally similar in the first dataset, and different (or noncongeneric)
in the second one. Indeed, while the kernel needs to detect subtle differences between
the compounds of the first dataset, it must identify regular patterns within the second
one, and it is not surprising that discriminating patterns are shorter in this case.
This observation supports the intuition that the choice of the order of the patterns
should to be related to (or learned from) the dataset itself, as suggested in section
3.3.1. Finally, we note that the best AUC value is around 84 % (corresponding to a
relative improvement of 7% over the corresponding walk-based kernel), and is therefore
similar to that obtained with the original formulation of the kernel. Nevertheless, we
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observe from the curves on the right-hand side that contrary to the first dataset, the
no-tottering extension has a limited overall impact. This is due to the surprising fact
that here, the no-tottering extension does not seem to be beneficial by itself, since
we can note that it systematically degrades the performance of the corresponding
walk-based kernels, obtained for λ = 0. As a result, even though the introduction of
tree-patterns is beneficial in both cases, better performances can be obtained here if
we consider tottering tree-patterns. Once again this behavior is opposite to that of
the first dataset. This might be explained as well by the fact that, contrary to the
first dataset, the molecules considered here are structurally different, and as a result,
tottering can help finding common features between these noncongeneric compounds.

Concerning the no-tottering extension (3.7) of the until-N branching-based kernel
(3.6), results presented in Figure 3.20 are not clear. Indeed, in that case, the introduc-
tion of the tree-patterns only improves the results for patterns of limited order, and
for patterns of order greater than 4, results systematically decrease. We can however
note the interesting point that optimal results obtained for patterns of order 5 to 10
converge to a global optimal value between 85 and 86 %. This therefore tends to con-
firm that in the no-tottering case, the until-N extension can help solving the problem
of pattern order selection by considering a maximal pattern order large enough (here,
h > 4). Nevertheless, the striking difference with the results obtained with the first
dataset is that in this case, when h > 4, the introduction of tree-patterns could not
further improve the results obtained by the until-N walk-based kernel, that constitute
the overall best performance we could observe for this dataset.
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Figure 3.18: Second dataset. Left: evolution of the AUC with respect to λ at different
orders h for the no-tottering extension (3.7) of the size-based kernel (3.1). Right:
no-tottering AUC values Vs original values.
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Figure 3.19: Second dataset. Left: evolution of the AUC with respect to λ at different
orders h for the no-tottering extension (3.7) of the branching-based kernel (3.2). Right:
no-tottering AUC values Vs original values.

3.7 Discussion and conclusion

This paper introduces a family of graph kernels based on the detection of common tree
patterns in the graphs. In a first step, we revisited an initial formulation presented in
Ramon and Gärtner (2003), from which we derived two kernels with explicit feature
spaces and inner products. A parameter λ enters their definition and makes it possible
to control the complexity of the features characterizing the graphs. At the extreme,
admissible tree-patterns consist of linear chains of graph vertices, and the kernels
resume to a classical graph kernel based on the detection of common walks (Gärtner
et al., 2003). Walk-based graph kernels are therefore generalized to a wider class of
kernels defined by features of increasing levels of complexity. In a second step we
introduced two modular extensions to this initial formulation. On the one hand, the
set of trees initially indexing the feature space is enriched by the set of their subtrees
with an until-N extension, leading to a wider and more general feature space. On the
other hand, a no-tottering extension prevents spurious tree-patterns to be detected,
based on the notion of ”tottering” initially introduced in the context of walk-based
graph kernels (Mahé et al., 2005).

In the context of chemical applications, experiments on two toxicity datasets demon-
strate that the tree-pattern graph kernels under their initial formulation improve over
their walk-based counterpart. However, while a significant improvement could be ob-
served for relatively small patterns, experiments revealed the difficulty to handle high
order patterns. This is due to the fact that the number of tree-patterns detected in
the graphs increases exponentially with their depth, which leads to a combinatorial
explosion of the kernels computation for large patterns. For this reason, the until-N
extension showed to be useless in this context: patterns of a given order are drowned
within the flood of patterns of greater order, and the two kernel formulations turned
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Figure 3.20: Second dataset. Left: evolution of the AUC with respect to λ at different
orders h for the no-tottering extension (3.7) of the until-N branching-based kernel
(3.6). Right: no-tottering AUC values Vs original values.

out to be equivalent. With the elimination of artificial tree-patterns, the no-tottering
extension limits this combinatorial explosion, and patterns of higher order can be con-
sidered in the kernel. This was in particular beneficial to the first dataset where optimal
results were obtained with high-order no-tottering patterns. Nevertheless, we notice
that this extension is not always beneficial, and that in some cases, artificial common
patterns due to the tottering phenomenon can help detecting molecular similarity.
This is in particular the case for the second dataset, and can be explained by the fact
that, in opposition to the first dataset, it consists of structurally different compounds.
The combination of the two extensions led to mixed results. For the first dataset, we
observe that the introduction of tree-patterns in this context could now improve over
their walk-based counterparts for any maximum pattern order. This suggests that the
limitation of the combinatorial explosion offered by the no-tottering extension makes
it possible to combine patterns of different order in the kernel. However, albeit close,
optimal results with the until-N extension could not come up with the optimal re-
sults that were obtained with no-tottering patterns of a given order. This suggests
that very precise patterns were to be detected, and that their discriminative power
is reduced by the addition of other, less predictive, patterns. For the second dataset,
the combination of the two extensions led to optimal results. In that case however,
the introduction of tree-patterns was not always beneficial and these optimal results
were obtained by until-N, no-tottering walk-kernels. Finally, we can note that, when
the maximum order of the patterns considered is large enough, results obtained with
the until-N extension and no-tottering patterns tend to converge to a global optimum
which is close, or equal to, to the overall best performance observed in both datasets.

Among the possible extensions to our work, we note that it might be relevant in
the context of chemical applications to incorporate chemical knowledge in the graph
representation of the molecules. For instance, it is well known that physico-chemical
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properties of atoms are related to their position in the molecule, and as a first step
in this direction, an enrichment of atom labels by their Morgan indices led to promis-
ing results in the context of walk-based kernels (Mahé et al., 2005). However, this
particular approach is likely to have a lesser impact in this context, because the in-
formation encoded by the Morgan indices is at some extend already incorporated in
the tree-patterns. Alternatively, we note that the kernel implementation could easily
be extended in order to introduce a flexible matching between tree-patterns based on
measures of similarity between pairs of vertices and edges, following for instance the
construction of the marginalized kernel between labeled graphs (Kashima et al., 2004).
Such an extension would induce an increase in the cost of computing the kernel, but
is likely to make sense for chemical applications, where atoms of different types can
exhibit similar properties.

Appendix

Proof of Propositions 13 and 14

In Propositions 13 and 14, we want to prove that for the graphs G1 and G2

∑

t∈Bh

w(t)ψt(G1)ψt(G2) = α(h)
∑

u∈VG1

∑

v∈VG2

kh(u, v), (3.8)

where in Proposition 13, α(h) = λ−h and w(t) = λ|t|−h, while in Proposition 14,
α(h) = 1 and w(t) = λbranch(t).

From Definition 8 we have ψt(G) =
∑

u∈VG

ψ
(u)
t (G). As a result,

∑

t∈Bh

w(t)ψt(G1)ψt(G2) =
∑

u∈VG1

∑

v∈VG2

(

∑

t∈Bh

w(t)ψ
(u)
t (G1)ψ

(v)
t (G2)

)

,

and in order to prove (3.8) we just need to prove
∑

t∈Bh

w(t)ψ
(u)
t (G1)ψ

(v)
t (G2) = α(h)kh(u, v). (3.9)

Proof of Proposition 13

In order to prove Proposition 13, it follows from (3.9) that we just need to prove that

1

λh
kh(u, v) =

∑

t∈Bh

λ|t|−hψ
(u)
t (G1)ψ

(v)
t (G2) ,

or equivalently:

kh(u, v) =
∑

t∈Bh

λ|t|ψ
(u)
t (G1)ψ

(v)
t (G2) , (3.10)
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where kh is defined recursively by k1(u, v) = λ1(l(u) = l(v)) and for h > 1:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

kh−1(u
′, v′) . (3.11)

We prove (3.10) by induction on h. The case h = 1 is rather trivial. Indeed, a tree

of depth one is just a single node, and ψ
(u)
t (G1) is therefore equal to 1 if l(u) = l(r(t)),

0 otherwise. It follows that

∑

t∈B1

λ|t|ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

t∈B1

λ1(l(r(t)) = l(u))1(l(r(t)) = l(v))

= λ1(l(u) = l(v)),

which corresponds to k1(u, v).
Let us now assume that (3.10) is true at order h − 1, and let us prove that it is

then also true at order h > 1. Combining the recursive definition of kh (3.11) with the
induction hypothesis (3.10) at level h− 1 we first obtain:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

t′∈Bh−1

λ|t
′|ψ

(u′)
t′ (G1)ψ

(v′)
t′ (G2) . (3.12)

Second, for any graph G, let us denote by P (u)
n (G) the set of balanced tree-patterns

of order n rooted in u ∈ VG, and for any tree-pattern p ∈ P (u)
n (G) let t(p) ∈ Bn

denote the corresponding tree. With these notations we can rewrite, for any n ≥ 1
and (u, v) ∈ G1 ×G2:

∑

t∈Bn

λ|t|ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P
(u)
n (G1)

∑

p2∈P
(v)
n (G2)

λ|t(p1)|1(t(p1) = t(p2)). (3.13)

Indeed both sides of this equation count the number of pairs of similar tree-patterns
rooted in u and v. Plugging (3.13) into (3.12) we get:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ|t(p1)|1(t(p1) = t(p2)) .

(3.14)
Now we use the fact that any tree-pattern p of order h can be uniquely decomposed
into a tree-pattern p′ of order 2 and a set of tree-patterns of order h − 1 rooted at
the leaves of p′. We note that matching two tree-patterns is equivalent to matching
the tree-patterns in their decomposition, and that the sets of leaves of tree-patterns
of order 2 rooted respectively in u and v matching each other are exactly given by
M(u, v). In other words, (3.14) performs a summation over pairs of matching tree-
patterns of depth h, rooted respectively in u and v: the corresponding pairs of patterns
of order 2 are implicitly matched by the summation over M(u, v) and the condition
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1(l(u) = l(v)), and the subsequent pairs of patterns (p1, p2) of order h−1 are matched
by the product of conditions 1(t(p1) = t(p2)).

The tree-pattern p1 in G1 of such a matching pair of tree-patterns of order h
rooted in (u, v) decomposes as a pattern of depth 2 rooted in u with leaves in some
R ∈ M(u, v), and a set of patterns p1(u

′) of depth h−1 rooted in the leaves u′ ∈ R. By
(3.14), to each such matching pair is associated the weight λ×

∏

(u′,v′)∈R λ
|t(p1(u′))|, which

is exactly equal to λ|t(p1)| since we obviously have |t(p1)| = 1+
∑

(u′,v′)∈R |t(p1(u
′))|. As

a result, (3.14) can be rewritten as:

kh(u, v) =
∑

p1∈P
(u)
h

(G1)

∑

p2∈P
(v)
h

(G2)

λ|t(p1)|1(t(p1) = t(p2)),

which combined with (3.13) proves (3.10).

Proof of Proposition 14

The proof of Proposition 14 is a straightforward variant of the proof of Proposition 13.
By (3.9) we need to show that

kh(u, v) =
∑

t∈Bh

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) , (3.15)

where kh is defined recursively by k1(u, v) = 1(l(u) = l(v)) and for h > 1:

kh(u, v) =
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

λkh−1(u
′, v′) . (3.16)

We proceed again by induction over h to prove (3.15). The case h = 1 is easily done
by checking, using an argument similar to that of the previous proof, that (3.15) is
one if l(u) and l(v) are identical, zero otherwise, which corresponds to the definition
of k1(u, v). If we assume that (3.15) is true at the level h− 1, we can plug it in (3.16)
to obtain:

kh(u, v) =
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

t′∈Bh−1

λ1+branch(t′)ψ
(u′)
t′ (G1)ψ

(v′)
t′ (G2) .

(3.17)
We can then follow exactly the same line of proof as in the previous section and

obtain the following equations

∑

t∈Bn

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P
(u)
n (G1)

∑

p2∈P
(v)
n (G2)

λbranch(t(p1))1(t(p1) = t(p2)) ,

(3.18)
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and

kh(u, v) =
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ1+branch(t(p1))1(t(p1) = t(p2)) ,

(3.19)
that correspond respectively to (3.13) and (3.14). The only difference with the previous
proof is in the exponent of λ to form the weight of a matching pair of tree-patterns.
By analogy with the previous proof, we consider the tree-pattern p1 in G1 of a pair
of matching tree-patterns of depth h rooted in (u, v), that decomposes as a pattern
of depth 2 rooted in u with leaves in some R ∈ M(u, v), and a set of patterns p1(u

′)
of depth h − 1 rooted in the leaves u′ ∈ R. By (3.19), to each such matching pair
is associated the weight 1

λ

∏

(u′,v′)∈R λ
1+branch(t(p1(u′))) = λ−1+

P

(u′,v′)∈R 1+branch(t(p1(u′))).

We observe that the number of leaves of a tree t, that we note leaves(t), is equal
to 1 + branch(t). The weight associated to the above pair of matching tree-patterns
can therefore be written as λ−1+

P

(u′,v′)∈R leaves(t(p1(u′))). Finally, because the number of
leaves of the tree-pattern p1 is equal to the sum of the leaves of the patterns p1(u

′), it
follows that this expression is equal to λ−1+leaves(t(p1)) = λbranch(t(p1)). As a result, we
can write (3.19) as

kh(u, v) =
∑

p1∈P
(u)
h

(G1)

∑

p2∈P
(v)
h

(G2)

λbranch(t(p1))1(t(p1) = t(p2)),

which, combined with (3.18), concludes the proof.

Proof of Proposition 15

The proof presented in this section is very similar to the proofs of Propositions 13 and
14. Based on the observations made in the beginning of Appendix 3.7, it follows from
(3.9) that in order to prove Proposition 15, we just need to prove that

kh(u, v) =
∑

t∈Th

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) , (3.20)

where kh is defined recursively by k1(u, v) = 1(l(u) = l(v)) and for h > 1

kh(u, v) = 1(l(u) = l(v))
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkh−1(u
′, v′)

)

. (3.21)

We proceed again by induction over h to prove (3.20). The case h = 1 directly follows
from the proof of Proposition 14. If we assume that (3.20) is true at the level h − 1,
we can plug it in (3.21) to obtain:

kh(u, v) = 1(l(u) = l(v))
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

∑

t′∈Th−1

λ1+branch(t′)ψ
(u′)
t′ (G1)ψ

(v′)
t′ (G2)

)

.

(3.22)
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By analogy with the construction of the previous proof, for any graph G, let us denote
by P (u)

n (G) the set of tree-patterns of depth 1 to n rooted in u ∈ VG, and for any

tree-pattern p ∈ P (u)
n (G) let t(p) ∈ Tn denote the corresponding tree. Note that

P(u)
n (G) corresponds here to general tree-patterns of depth 1 to n, in opposition to the

balanced-tree patterns of order n involved in the previous proofs. With these notations
we obtain similarly, for any n ≥ 1 and (u, v) ∈ G1 ×G2:

∑

t∈Tn

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P
(u)
n (G1)

∑

p2∈P
(v)
n (G2)

λbranch(t(p1))1(t(p1) = t(p2)),

(3.23)
and, plugging (3.23) into (3.22), we get:

kh(u, v) =1(l(u) = l(v))

×
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ1+branch(t(p1))1(t(p1) = t(p2))
)

,

(3.24)

which can be further decomposed into:

kh(u, v) =1(l(u) = l(v))

+
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ1+branch(t(p1))1(t(p1) = t(p2)).

(3.25)

The second part of the right member of (3.25) matches pairs of tree-patterns of depth
2 to n rooted in (u, v). It follows directly from the proof of Proposition 14 that such a
pair (p1, p2) of matching tree-patterns is weighted by λbranch(t(p1)). The first part of the
right member of (3.25) matches the trivial pair of tree-patterns of depth 1 rooted in
(u, v) consisting of the single nodes (u, v). The corresponding tree has a zero branching
cardinality, and we can therefore write

1(l(u) = l(v)) =
∑

t∈T1

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2).

Taken together, these two arguments show that (3.25) can be written as

kh(u, v) =
∑

t∈Th

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2),

which concludes the proof.
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Proof of Proposition 19

The proof is derived from results presented in Mahé et al. (2005). The sets of walks
and no-tottering walks of the graph G = (VG, EG) are respectively defined by W(G) =
⋃∞

n=0 Wn(G) and WNT (G) =
⋃∞

n=0 WNT
n (G), where

Wn(G) = {(v0, . . . , vn) ∈ Vn+1
G : (vi, vi+1) ∈ EG, 0 ≤ i ≤ n− 1}

is the set of walks of length n defined is Section 3.3.1, and

WNT
n (G) = {(v0, . . . , vn) ∈ Wn(G) : vi 6= vi+2, 0 ≤ i ≤ n− 2}

is the set of no-tottering walks of length n defined in Mahé et al. (2005). We start by
stating the following lemma.

Lemma 20. A tree-pattern p of the graph G associated to the tree t is no tottering
if, and only if, any walk of G defined as a succession of vertices of p corresponding to
nodes of t forming a path from its root to one of its leaves is no-tottering.

Proof. [Lemma 20] According to Definition 16, let (v1, . . . , v|t|) ∈ V |t|
G be a no-tottering

tree pattern of the graph G = (VG, EG) corresponding to the tree t = (Vt, Et), where
Vt = (n1, . . . , n|t|). Let (ni0 , . . . , nik) ∈ Vk+1

t be a path from the root of t to one
of its leaves. By Definition 7, it is clear that (vi0 , . . . , vik) ∈ W(G). Moreover, by
the definition of paths we have (nim , nim+1), (nim+1, nim+2) ∈ Et for 0 ≤ m ≤ k − 2.
By Definition 16, this implies that vim 6= vim+2 for 0 ≤ m ≤ k − 2, meaning that
(vi0 , . . . , vik) ∈ WNT (G).

Conversely, let p ∈ V |t|
G be a tree-pattern of the graph G = (VG, EG) corresponding

to the tree t = (Vt, Et). Consider the set of walks of G defined as successions of
vertices of p associated to nodes of t forming paths from its root to its leaves. If these
walks are not tottering, it is clear from Definition 16 that the tree-pattern itself is not
tottering.

We can now state the proof of Proposition 19.

Proof. [Proposition 19] If, according to Definition 18, we let G′ be the transformed
graph of G, Mahé et al. (2005) showed that there is a bijection between WNT (G) and
the set of walks of G′ starting in a vertex corresponding to a vertex of G, which can
be formally defined as

W{VG}(G′) = {(v0, . . . , vn) ∈ W(G′) : v0 ∈ {VG}, n ∈ N},
if we let VG ⊂ VG′ be the subset of VG′ that corresponds to VG. It follows from Lemma
20 that there is a bijection between the set of no-tottering tree-patterns of G and the
set of tree-patterns of G′ rooted in a vertex of VG. Finally, Mahé et al. (2005) showed
that a walk in WNT (G) and its image in W{VG}(G′) are identically labeled, which
enables to count no-tottering labeled walks in G, by counting identically labeled walks
in G′ starting in a vertex of VG . It follows that counting no-tottering tree-patterns in
G is equivalent to counting tree-patterns in G′ rooted in a vertex of VG. As a result,
we have ψNT

t (G) = ψ
{VG}
t (G′), which concludes the proof.
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Chapter 4
The pharmacophore kernel

This work appeared in a slightly different form in the Journal of Chemical Information
and Modeling, co-authored with Liva Ralaivola, Véronique Stoven and Jean-Philippe
Vert (Mahé et al., 2006).

Introduction

It is widely accepted that several drug-like properties can be efficiently deduced from
the 2D structure of the molecule, that is, the description of a molecule as a set of
atoms and their covalent bonds. For example, Lipinski’s “rule of five” remains a widely
used standard for the prediction of intestinal absorption (Lipinski et al., 2001), and
the prediction of mutagenicity from 2D molecular fragments is an accurate state-of-
the-art approach (King et al., 1996). In the case of target binding prediction, however,
the molecular mechanisms responsible for the binding are known to depend on a pre-
cise 3D complementarity between the drug and the target, from both the steric and
electrostatic perspectives (Böhm et al., 2003). For this reason, there has been a long
history of research on the prediction of these interactions from the 3D representation
of molecules, that is, their spatial conformation in the 3D space. If the 3D structure
of the target is known, the strength of the interaction can be directly evaluated by
docking techniques, that quantify the complementarity of the molecule to the target
in terms of energy (Halperin et al., 2002; Kitchen et al., 2004). In the general case
where the 3D structure of the target is unknown, however, the docking approach is
not possible anymore and the modeler must adopt a ligand-based approach to create a
predictive model from available data, typically a pool of molecules with known affinity
to the target.

Most approaches to ligand-based virtual screening require to represent and com-
pare 3D structures of molecules. The comparison of 3D structures can for example
rely on optimal alignments in the 3D space (Lemmen and Lengauer, 2000), or on the
comparison of features extracted from the structures (Xue and Bajorath, 2000). Fea-
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tures of particular importance in this context are subsets of two to four atoms together
with their relative spatial organization, also called pharmacophores. Discovering phar-
macophores common to a set of known inhibitors to a drug target can be a powerful
approach to the screening of other candidate molecules containing the pharmacophores,
as well as a first step towards the understanding of the biological phenomenon involved
(Holliday and Willett, 1997; Finn et al., 1998). Alternatively, pharmacophore finger-
prints, that is, bitstrings representing a molecule by the pharmacophores it contains,
has emerged as a potential approach to apply statistical learning methods for SAR,
although sometimes with mixed results (Matter and Pötter, 1999; Brown and Martin,
1997; Bajorath, 2001).

We focus in this paper on an extension of the fingerprint representation of molecules
for building SAR models with support vector machines (SVM). Although SVM can be
trained from a vector or bitstring representation of molecules, they can also take advan-
tage of a mathematical trick to only rely on a measure of similarity between molecules,
known as kernel. This trick was for example used in Kashima et al. (2004) and Mahé
et al. (2005) to build SAR models from a 2D fingerprint of molecules of virtually infinite
length. Here we investigate the possibility to use this trick in the context of 3D SAR
modeling. We propose a measure of similarity between 3D structures, which we call
the pharmacophore kernel, based on the comparison of pharmacophores present in the
structures. It satisfies the mathematical properties required to be a valid kernel and it
therefore allows the use of SVM for model building. This kernel bears some similarity
with pharmacophore fingerprint approaches, although it produces more general mod-
els. In fact, we show that a fast approximation of this kernel, based on pharmacophore
fingerprints, leads to significantly lower performance on a benchmark dataset. The
overall good performance of the approach on this benchmark supports its relevance as
a potentially effective tool for 3D SAR modeling. We start this chapter by the defini-
tion of the pharmacophore kernel in Section 4.1. Its exact computation is presented in
Section 4.2, followed by a discussion about the connection between the pharmacophore
kernel and recently introduced graph kernels (Section 4.3), and the presentation of a
fast approximation (Section 4.4). Experimental results on a benchmark dataset in-
volving the detection of inhibitors of several drug targets are then presented in Section
4.5, followed by a short discussion.

4.1 Kernel definition

A pharmacophore is usually defined as a three-dimensional arrangement of atoms - or
groups of atoms - responsible for the biological activity of a drug molecule (Güner,
2000). The present work focuses on three-points pharmacophores, composed of three
atoms whose arrangement therefore forms a triangle in the 3D space (Figure 4.1).
With a slight abuse we refer as pharmacophore below to any possible configuration
of three atoms or classes of atoms arranged as a triangle and present in a molecule,
representing therefore a putative configuration responsible for the biological property
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Figure 4.1: Left: a 3-points pharmacophore made of one hydrogen bond acceptor
(topmost sphere) and two aromatic rings, with distances d1, d2 and d3 between the
features. Middle: the molecule of flavone. Right: match between flavone and the
pharmacophore.

of interest.
Throughout this paper we represent the 3D structure of a molecule as a set of points

in R
3. These points correspond to the 3D coordinates of the atoms of the molecule

(for a given arbitrary basis of the 3D Euclidean space), and they are labeled with some
information related to the atoms. More formally, we define a molecule m as

m =
{

(xi, li) ∈ R
3 × L

}

i=1,...,|m |
,

where |m | is the number of atoms that compose the molecule and L denotes the set of
atom labels. The label is meant to contain the relevant information to characterize a
pharmacophore based on atoms. It might for instance be defined by the type of atom
(C, N, O, ...) and/or various physicochemical atomic properties (e.g., partial charge).
The three-points pharmacophores considered in this work correspond to triplets of
distinct atoms of the molecules. The set of pharmacophores of the molecule m can
therefore be formally defined as:

P(m) =
{

(p1, p2, p3) ∈ m3, p1 6= p2, p1 6= p3, p2 6= p3

}

. (4.1)

More generally, the set of all possible pharmacophores is naturally defined as P =
(R3 × L)

3
, to ensure the inclusion P(m) ⊂ P. We can now define a general family of

kernels for molecules based on their pharmacophore content:

Definition 21. For any positive definite kernel for pharmacophores KP : P ×P → R,
we define a corresponding pharmacophore kernel for any pair of molecules m and m′

by :

K(m,m′) :=
∑

p∈P(m)

∑

p′∈P(m′)

KP(p, p′) , (4.2)

with the convention that K(m,m′) = 0 if either P(m) or P(m′) is empty.

The fact that the pharmacophore kernel defined in (4.2) is a valid positive definite
kernel on the set of molecules, as soon as KP is itself a valid positive definite kernel
on the set of pharmacophores, is a classical result (see e.g., Haussler, 1999, Lemma 1).
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The problem of constructing a pharmacophore kernel for molecules therefore boils down
to the simpler problem of defining a kernel between pharmacophores. A chemically
relevant measure of similarity between pharmacophores should obviously quantify at
least two features: first, similar pharmacophores should be made of similar atoms
(where the notion of similarity can for instance be based on atom types or property(ies),
and more generally on pharmacophoric types), and second, the atoms should have
similar relative positions in the 3D space. It is therefore natural to study kernels for
pharmacophores that decompose as follows:

KP(p, p′) = KI(p, p
′) ×KS(p, p′) , (4.3)

where KI is a kernel function assessing the similarity between the triplets of basis
atoms of the pharmacophores (their so-called intrinsic similarity), and KS is a kernel
function introduced to quantify their spatial similarity.

We can furthermore investigate intrinsic and spatial kernels that factorize them-
selves as products of more basic kernels between atoms and pairwise distances, respec-
tively. Triplets of atoms are indeed globally similar if the three corresponding pairs of
atoms are simultaneously similar, and triangles are similar if the lengths of their edges
are pairwise similar. For any pair of pharmacophores p = ((x1, l1) , (x2, l2) , (x3, l3))
and p′ = ((x′1, l

′
1) , (x

′
2, l

′
2) , (x

′
3, l

′
3)), this suggests to define kernels as follows:

KI(p, p
′) =

3
∏

i=1

KFeat (li, l
′
i) , (4.4)

KS(p, p′) =
3
∏

i=1

KDist

(

‖ xi − xi+1 ‖, ‖ x′i − x′i+1 ‖
)

, (4.5)

where ‖ . ‖ denotes the Euclidean distance, the index i+1 is taken modulo 3, and KFeat

and KDist are kernels functions introduced to compare pairs of labels from L, and pairs
of distances, respectively. It suffices now to define the kernels KFeat on L×L and KDist

on R × R in order to obtain, by (4.2), (4.3), (4.4) and (4.5), a pharmacophore kernel
for molecules. The first one compares the atom labels, while the second compares
the distances between atoms in the pharmacophores. Intuitively they define the basic
notions of similarity involved in the pharmacophore comparison, which in turns defines
the overall similarity between molecules.

Note from the definition in equation (4.1) that, because of permutations, every dis-
tinct triplet of atoms of the molecule m gives rise to six pharmacophores in P(m). In
the general case, these six pharmacophores are considered as different in the pharma-
cophore kernel. However, because of the definition of the notion of similarity between
pharmacophores, some of these six pharmacophores will be seen as identical if the
triplet of atoms is made of atoms in the same type. This phenomenon is even empha-
sized if the triplet of atoms exhibits some kind of spatial symmetry. For example, the
six pharmacophores associated to a triplet of identical atoms arranged as an equilateral
triangle are identical.
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The kernel we use for KDist is the Gaussian radial basis function (RBF) ker-
nel, known to be a safe default choice for SVM working on real numbers or vectors
(Schölkopf and Smola, 2002):

KRBF
Dist (x, y) = exp

(

−||x− y||2
2σ2

)

, (4.6)

where σ > 0 is the bandwith parameter that will be optimized as part of the training
of the classifier (see Section 4.5.2). Various kernels KFeat between labels can be chosen
depending on the atom labels definition. These labels belonging in principle to a finite
set of possible labels, e.g., the set of atom types with their charges (C, C+, C−, N,
...), the following Dirac kernel is a natural default choice to compare a pair of atom
labels l, l′ ∈ L :

KDirac
Feat (l, l′) =

{

1 if l = l′ ,

0 otherwise .
(4.7)

Alternatively, it might be relevant for pharmacophore definition to compare atoms
not only on the basis of their types and partial charges, but also in terms of other
physicochemical parameters such as their size, polarity and electronegativity. Formally,
a physicochemical parameter for an atom with label l is a real number f(l). In that
case, the Gaussian RBF kernel (4.6) could be applied directly to the parameter values
to compare labels. We discuss this issue in section 4.6. Note finally that the Gaussian
(4.6) and Dirac (4.7) kernels are known to be definite positive (Schölkopf and Smola,
2002), and it follows from the closure properties of the family of kernel functions, that
the kernel between pharmacophores KP is valid for these choices of the kernels KFeat

and KDist.

4.2 Kernel computation

We are now left with the task of computing the pharmacophore kernel (4.2) for a
particular choice of feature and distance kernels KFeat and KDist. In this section we
provide a simple analytical formula for this computation.

For any pair of molecules m = {(xi, li) ∈ R
3 × L}i=1,...,|m| and

m′ = {(x′i, l′i) ∈ R
3 × L}i=1,...,|m′|, let us define a square matrix M of size n = |m|×|m′|,

whose dimensions are indexed by the Cartesian product ofm andm′. In other words, to
each index i ∈ [1, n] corresponds a unique couple of indices (i1, i2) ∈ [1, |m|]× [1, |m′|],
and to each dimension of the matrix M corresponds a distinct pair of points taken
from the molecules m and m′. Denoting by 1 (.) the indicator function equal to one if
its argument is true, zero otherwise, the entries of M are defined by:

M [i, j] = M [(i1, i2), (j1, j2)]

= KFeat

(

li1, l
′
i2

)

×KDist

(

||xi1 − xj1 ||, ||x′i2 − x′j2 ||
)

× 1 (i1 6= j1) × 1 (i2 6= j2) .

(4.8)
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The value of the pharmacophore kernel between m and m′ can now be deduced from
the matrix M by the following result:

Proposition 22. The pharmacophore kernel (4.2) between a pair of molecules m and
m′ is equal to:

K(m,m′) = trace(M 3),

where M is the square matrix of dimension |m | × |m′ | constructed from m and m′ by
(4.8).

Proof. Developing the matrix products involved in the expression of M 3 we get

trace(M3) =

n
∑

i,j,k=1

M [i, j]M [j, k]M [k, i] ,

where n = |m| × |m′| is the size of M . Using the fact that the indices of M ranges
over the Cartesian product of the set of indices [1, |m|] and [1, |m′|], we can rewrite
this expression as :

trace(M3) =

|m|
∑

i1,j1,k1=1

|m′|
∑

i2,j2,k2=1

M [(i1, i2), (j1, j2)]M [(j1, j2), (k1, k2)]M [(k1, k2), (i1, i2)] .

Substituting with the definition of M given in (4.8), we obtain :

trace(M3) =

|m|
∑

i1,j1,k1=1

|m′|
∑

i2,j2,k2=1

1 (i1 6= j1)1 (j1 6= k1)1 (k1 6= i1) × 1 (i2 6= j2) 1 (j2 6= k2) 1 (k2 6= i2)

×KFeat

(

li1 , l
′
i2

)

×KDist

(

||xj1 − xi1 ||, ||x′j2 − x′i2 ||
)

×KFeat

(

lj1 , l
′
j2

)

×KDist

(

||xk1 − xj1 ||, ||x′k2
− x′j2 ||

)

×KFeat

(

lk1 , l
′
k2

)

×KDist

(

||xi1 − xk1 ||, ||x′i2 − x′k2
||
)

=

|m|
∑

i1,j1,k1=1

|m′|
∑

i2,j2,k2=1

1 (i1 6= j1 6= k1) × 1 (i2 6= j2 6= k2)

×KP

(

((xi1 , li1), (xj1, lj1), (xk1, lk1)) ,
(

(x′i2 , l
′
i2
), (x′j2, l

′
j2

), (x′k2
, l′k2

)
))

=

|m|
∑

i1,j1,k1=1,
i1 6=j1 6=k1

|m′|
∑

i2,j2,k2=1,
i2 6=j2 6=k2

KP

(

((xi1 , li1), (xj1 , lj1), (xk1, lk1)) ,
(

(x′i2 , l
′
i2
), (x′j2, l

′
j2

), (x′k2
, l′k2

)
))

=
∑

p∈P(m)

∑

p′∈P(m′)

KP(p, p′)

= K(m,m′) .
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If we let u be the cost of evaluating the basis kernels KFeat and KDist, and consider
that the cost of the addition and product operations is a small constant, the com-
plexity of the kernel between pharmacophores KP is 6u. Since the cardinality of the
set of pharmacophore P(m) of the molecule m is |m|3, the complexity of the direct
computation of the pharmacophore kernel given in definition 21 is (|m| × |m′|)3 × 6u.
On the other hand, the computation given in Proposition 22 is a two step process :

• first is the initialization of the matrix M : each of the (|m| × |m′|)2 entries is
initialized by the product of a kernel KFeat with a kernel KDist, for a complexity
of (|m| × |m′|)2 × 2u

• second is the computation of the trace of M 3, which has a complexity of (|m| ×
|m′|)3

The global complexity of the matrix-based computation of the kernel is therefore (|m|×
|m′|)3 + (|m| × |m′|)2 × 2u, or equivalently (|m| × |m′|)3 × (1 + 2u/(|m| × |m′|)). In
comparison with the direct approach, the matrix-based implementation proposed in
Proposition 22 reduces the number of basis kernels KDist and KFeat to be computed
and is therefore more efficient. In any case, the complexity of the pharmacophore
kernel computation is therefore O

(

(|m| × |m′|)3). Even for relatively small molecules
(of the order of 50 atoms), this complexity becomes in practice a serious issue when the
size of the dataset increases to thousands or tens of thousands of molecules. However,
we can note from the definition given in (4.8), that the lines of M corresponding to
pairs of points (x, l) ∈ m and (x′, l′) ∈ m′ for which KFeat(l, l

′) = 0 are filled with zeros.
Based on this consideration, we observe that the cost of computing the kernel can be
reduced by limiting the size of the matrix M , according to the following proposition.

Proposition 23. If we let M2 be the reduced version of a square matrix M1, where the
null lines and the corresponding columns are removed, then trace(M 3

2 ) = trace(M 3
1 ).

Proof. Let n1 (resp. n2) be the size of M1 (resp. M2), and define P (resp. N) as the
subset of the set of indices [1, n1] that corresponds to the non-null (resp. null) lines of
M1. By definition, we have

trace(M3
1 ) =

n1
∑

i=1

M3
1 [i, i]

=

n1
∑

i,j,k=1

M1[i, j]M1[j, k]M1[k, i] . (4.9)

Moreover, if i ∈ N , then M1[i, j] = 0 ∀j ∈ [1, n1]. As a consequence, the term
M1[i, j]M1[j, k]M1[k, i] in the summations over i, j, and k in (4.9) is zero as soon as
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at least one index i, j or k is in the set N . It follows that

trace(M3
1 ) =

∑

i,j,k∈P

M1[i, j]M1[j, k]M1[k, i]

=

n2
∑

i,j,k=1

M2[i, j]M2[j, k]M2[k, i]

= trace(M3
2 ) .

Proposition 23 implies that the Cartesian product of m and m′ involved in the
matrix M defined in (4.8) can be restricted to the pairs of points for which the la-
bel kernel KFeat is non-zero. In the case of the Dirac kernel (4.7) for discrete labels,
this boils down to introducing a dimension in M for any pair of atoms having the
same label. This result can have important consequences in practice. Consider for
example the case where the atoms of the molecules m and m′ are uniformly dis-
tributed in k classes of atom labels. In this case, the size of the matrix M is equal to
k (|m|/k × |m′|/k) = |m|× |m′|/k. The complexity of the kernel computation is there-
fore O ((|m| × |m′|/k)3) = O ((1/k3)(|m| × |m′|)3). It is therefore reduced by a factor
k3 in comparison with the original implementation. More generally this shows that
important gains in memory and computation can be expected when the set of labels is
increased. Section 4.5.3 discusses such a case in more details when the partial charges
of atoms are included or not in the labels. Note finally that in a similar way, the kernel
KDist to compare distances can be set to a compactly supported kernel instead of the
Gaussian RBF kernel (4.6). This has the effect of introducing sparsity in the matrix
M , allowing the kernel computation to benefit from sparse matrix algorithms. This
possibility was not further explored in this work.

4.3 Relation to graph kernels

In this section we show that the pharmacophore kernel can be seen as an extension
of the walk-count graph kernels (Gärtner et al., 2003) to the 3D representation of
molecules. The walk-count graph kernel is based on the representation of a molecule
m as a labeled graph m = (V, E), defined by a set of vertices V, a set of edges E ⊂ V×V
connecting pairs of vertices, and a labeling function l : V∪E → A, assigning a label l(x)
in an alphabet A to any vertex or edge x. In the case of molecules, the set of vertices
V corresponds to the atoms of the molecule, and the edges of the graph are usually
defined as the covalent bonds between the atoms of the molecules (Gärtner et al., 2003;
Kashima et al., 2004; Mahé et al., 2005). In order to extend this 2D representation to
a graph structure capturing 3D information, we propose to introduce an edge between
any pair of vertices of the graph. Molecules are therefore seen as complete, atom-
based graphs. If we now define a walk of length n as a succession of n + 1 connected
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vertices, it is easy to see that there is a one-to-one correspondence between the set of
pharmacophores P(m) of a molecule m, and its set of self-returning walks of length-
three, defined formally for the molecule m = (V, E) as

W∗
3 (m) =

{

(v0, v1, v2, v3) ∈ V4 : (vi, vi+1) ∈ E , 0 ≤ i ≤ 2 ∧ v3 = v0

}

.

We can therefore write the pharmacophore kernel (4.2) as a walk-based graph kernel:

K(m,m′) =
∑

p∈P(m)

∑

p′∈P(m′)

KP(p, p′) =
∑

w∈W∗
3 (m)

∑

w′∈W∗
3 (m′)

KWalk(w,w
′) ,

where KWalk(w,w
′) = KP (p, p′) for the pair of walks (w,w′) corresponding to the pair

of pharmacophores (p, p′). More precisely, consider a pair of pharmacophores p =
((x1, l1) , (x2, l2) , (x3, l3)) and p′ = ((x′1, l

′
1) , (x

′
2, l

′
2) , (x

′
3, l

′
3)), and a corresponding pair

of walks w = (w1, w2, w3, w1) and w′ = (w′
1, w

′
2, w

′
3, w

′
1). There is a direct equivalence

between KP and KWalk if we choose to label the vertices of the graphs by the atom
labels involved in the pharmacophore characterization, and to label the edges by the
Euclidean distance between the atoms they connect. Indeed, in this case we can write
:

KP(p, p′) =

3
∏

i=1

KFeat (li, l
′
i)KDist

(

‖ xi − xi+1 ‖, ‖ x′i − x′i+1 ‖
)

=
3
∏

i=1

KFeat (l(wi), l(w
′
i))KDist

(

l ((wi, wi+1)) , l
(

(w′
i, w

′
i+1)
))

= KWalk(w,w
′)

A striking point of this kernel between walks is that it can be factorized along the
edges of the walks:

KWalk(w,w
′) =

3
∏

i=1

KFeat (l(wi), l(w
′
i))KDist

(

l ((wi, wi+1)) , l
(

(w′
i, w

′
i+1)
))

=
3
∏

i=1

KStep

(

(wi, wi+1), (w
′
i, w

′
i+1)
)

(4.10)

The pharmacophore kernel therefore formulates as a walk-based graph kernel, with a
walk kernel factorizing along the edges of the walks. It follows from Kashima et al.
(2004) that it can be computed by the formalism based on product-graphs and powers
of the adjacency matrix proposed in Gärtner et al. (2003), if the adjacency matrix of
the product-graph is weighted by the walk-step kernels KStep (4.10). Consequently,
the matrix M defined in (4.8) and upon which is based the kernel computation of
Proposition 22, can be seen as a weighted adjacency matrix of a product-graph defined
on complete, atom-based, molecular factor graphs.
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Note moreover that in its way to characterize the molecular structure, the pharma-
cophore kernel bears some similarity with cyclic patterns kernels (Horváth et al., 2004)
where a molecule is represented by graph cycles, even though general cycles instead of
cycles of size three are considered in this latter approach, and the graph corresponds
to the 2D structure of the molecule.

4.4 Fast approximation

As an alternative to the costly computation presented in Section 4.2, we introduce in
this section a fast approximation to the pharmacophore kernel based on a discretization
of the pharmacophore space. Our definition of pharmacophores is based on the atoms
3D coordinates, but they can equivalently be characterized by the pairwise distances
between atoms. In order to define discrete pharmacophores, we restrict ourselves to
discrete sets of atom labels (e.g., the set of atom types), and we discretize uniformly
the range of distances between atoms into a predefined number of bins. For example,
if the inter atomic distances lie in the 0-20 angstroms () range, and we consider 10
bins to discretize the distances, the bins will correspond to the intervals 0-2, 2-4,...,18-
20. Each distance is then mapped to the index of the bin it falls in, and a discrete
pharmacophore is defined by a triplet of atom labels together with a triplet of bin
indices. More formally, if the distance range is discretized into p bins, the set of
discrete pharmacophores is a finite set defined as T3 = L3 × [1, p]3, where L is the set
of atom labels.

Consider the mapping φ3pt from the set of molecules to the set of discrete pharma-
cophores T3, defined for the molecule m as φ3pt(m) = (φt(m))t∈T3

, where φt(m) is the
number of times the pharmacophore t is found in the molecule m. This mapping leads
to the following kernel definition.

Definition 24 (Three-points spectrum kernel). For a pair of molecules m and
m′, we define the three-points spectrum kernel K3pt

Spec as

K3pt
Spec(m,m

′) = 〈φ3pt(m), φ3pt(m′)〉 =
∑

t∈T3

φt(m)φt(m
′) . (4.11)

Note that if we define the mapping d : P 7→ T3, such that d(p) is the discretized
version of the pharmacophore p ∈ P, we can explicitly write the three-points spectrum
kernel as a particular pharmacophore kernel (4.2):

K3pt
Spec(m,m

′) =
∑

p∈P(m)

∑

p′∈P(m′)

1 (d(p) = d(p′)) . (4.12)

This equation shows that this is a crude pharmacophore kernel, based on a kernel for
pharmacophores that simply checks if two given pharmacophores have identical dis-
cretized versions or not.
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In addition, we consider a “two-points pharmacophore” version of the kernel (4.11),
based on pairs, instead of triplets, of atoms (Swamidass et al., 2005). Letting T2 be
the set of all possible two-points pharmacophores, that is, pairs of atom types together
with the bin index of the edge connecting them, and φ2pt(m) = (φt(m))t∈T2

be the
mapping of the molecule m to T2, corresponding to φ3pt(m) , we define the following
two-points spectrum kernel.

Definition 25 (Two-points spectrum kernel). For a pair of molecules m and m′,
we define the two-points spectrum kernel K2pt

Spec as :

K2pt
Spec(m,m

′) = 〈φ2pt(m), φ2pt(m′)〉 =
∑

t∈T2

φt(m)φt(m
′) . (4.13)

This kernel shows strong similarities with recently introduced kernels for 3D struc-
tures of molecules (Swamidass et al., 2005), and is introduced as a baseline to validate
the three-points pharmacophore characterization of molecules.

The kernels (4.11) and (4.13) are directly expressed as dot-products, and are con-
sequently positive definite, which justifies their use with SVM. Moreover, these kernels
can be computed efficiently using an algorithm derived from that used in the imple-
mentation of spectrum string kernels (Leslie et al., 2002). We describe this algorithm
for the three-points version of the kernel, its extension to the two-points kernel be-
ing straightforward. Following the notation of Section 4.3, we represent molecules by
complete, atom-based labeled graphs, with the difference that the set of atom labels
L defining the vertices labels is considered to be discrete (e.g., the atom types), and
the edges are now labeled by the bin index of the corresponding inter-atomic distance.
We consider the problem of computing the Gram matrix K associated to such a set
of molecular graphs

{

Gi = (VGi
, EGi

)
}

i=1,...,n
for the kernel (4.11). The alphabet A,

involved in the graph labeling function l of section 4.3, is defined as A = AV ∪ AE,
where AV is the set of vertex labels, corresponding to the set of atom labels L, and
AE is the set of edges labels, corresponding to the set of distance bins indices.

The algorithm is based on the manipulation of sets of walk pointers within each
graph, according to a tree transversal process. If we let n and p be the cardinalities of
AV and AE respectively, we define a rooted tree of depth five structuring the space of
pharmacophores T3 as follows :

• the root node1 has n sons, corresponding to the n possible vertex labels

• the nodes of depth two and three have n × p sons, corresponding to the n × p
possible pairs of edge and vertex labels

• the nodes of depth four have p sons, corresponding to the p possible edges labels,
a leaf node being implicitly associated the vertex label of its depth-one ancestor.

1Recall from Chapter 3 that, by definition, the depth of the root node is 1.
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A path from the root to a leaf node therefore corresponds to a triplet of distinct vertex
labels, together with a triplet of distinct edge labels. There is therefore a one-to-one
correspondence between the leaf nodes and the pharmacophores of T3. The principle
of the algorithm is to recursively transverse this tree until each leaf node (i.e., each
potential pharmacophore) is visited. During this process, a set of walk pointers is
maintained within each molecule. The pointers are recursively updated such that
the pointed walks correspond to the pharmacophores under construction in the tree-
transversal process. When reaching a leaf node, the pointed walks correspond to the
occurrences of a particular pharmacophore t in the molecules. The mapping φt(Gi)
can therefore be computed for the molecular graphs {Gi}i=1,...,n, and the kernel matrix
K can be updated by adding the products φt(Gi)φt(Gj) to its (i, j) entries.

A pseudo code of the algorithm is given in Algorithms 1, 2, 3 and 4. Algorithm 1 is
the main program in charge of the tree-transversal process, and Algorithms 2, 3 and 4
are subroutines, introduced to initialize the walks pointers, extend the pointed walks,
and update the Gram matrix respectively. This pseudo-code relies on the abstract
types Pointer and Label, to represent the walk pointers involved in the algorithm, and
the generic vertices and edges labels, belonging to AV and AE respectively. Formally, a
Pointer object consists of two graph vertices: a start and current vertex, representing
the first and the current vertices of the pointed walk under extension. To maintain
walks pointers within each molecule, we introduce a matrix of pointers walkPointers
= Pointer[][] : this matrix is initially empty, and during the walk extension process,
walkPointers[i][j] corresponds to the j-th pointer of the molecular graph Gi. The stop-
ping criterion of the recursion is controlled by an integer variable depth corresponding
to the depth in the tree during the transversal process. It is initialized to one and
incremented at each recursive call. When depth is four, a node of depth four is reached
in the tree, which corresponds to pointers on walks of length two in the graphs. In the
subsequent recursive step, depth is five, and the pointers are updated to ensure that the
extended walks correspond to self-returning ones. A leaf node is then reached and the
recursion terminates, leading to an update of the Gram matrix. Note however that the
recursion is aborted whenever the set of walk pointers becomes empty for all graphs,
since we only need to reach the leaf nodes corresponding to the pharmacophores truly
present in the set of graphs.

Computing the Gram matrix K simply requires a call to the COMPUTE function
of Algorithm 1 with the following arguments: walkPointers, the empty Pointer matrix,
depth initialized to one, and K, the n× n Gram matrix filled with zeros. The cost of
this algorithm depends on the number of leaf nodes visited, and is therefore bounded
by the total number of leaves of the tree, that is (np)3 if the number of distinct vertex
labels is n and the number of distance bins is p. However, the maximum number
of distinct pharmacophores that can be found in the molecule m is |m|3, and we do
not need to exhaustively transverse the tree. This means that to compute the kernel
between the molecules m and m′, at most min(|m|3, |m′|3) leaves, corresponding to
the common pharmacophores of m and m′, need to be visited. The complexity of the
algorithm is therefore O (min ((np)3,min (|m|3, |m′|3))). For small molecules, the cost
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of the kernel will therefore depend on their number of atoms, while it will depend on
the size of the discrete pharmacophore space for large molecules.

Note finally that although we omit the details, the previous algorithm and com-
plexity analysis hold for the two-points versions of the kernels : the tree involved in
the recursive transversal process is smaller (a tree of depth three with n2p leaf nodes),
and the complexity is reduced to O (min (n2p,min(|m|2, |m′|2))).

Algorithm 1 main program

COMPUTE(Pointer[][] walkPointers,Integer depth, Float[][] K)

depth = depth+ 1
if depth = 2 then

for label ∈ AV do
walkPointers = initPointers(label)
compute(walkPointers, depth,K)

end for
else

for label1 ∈ AV do
for label2 ∈ AE do
walkPointers = extendPointers(walkPointers, depth, label1, label2)
if walkPointers 6= [][] then

if depth = 5 then
updateGram(walkPointers,K)

else
compute(walkPointers, depth,K)

end if
end if

end for
end for

end if

4.5 Experiments

We now turn to the experimental section. The problem considered here consists in
building predictive models to distinguish active from inactive molecules on several
protein targets. This problem is naturally formulated as a supervised binary classifi-
cation problem that can be solved by SVM.

4.5.1 Datasets

We tested the pharmacophore kernel on several datasets used in a recent SAR study
(Sutherland et al., 2003). More precisely, we considered the following four publicly
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Algorithm 2 Sub-routine 1 : initialize walks pointers

INITPOINTERS(Label label)

walkPointers = Pointer[][]
for i = 1, ..., n do

for v ∈ VGi
do

if l(v) = label then
walkPointers[i].addPointer(start = v, current = v)

end if
end for

end for
return walkPointers

Algorithm 3 Sub-routine 2 : extend walks pointers

EXTENDPOINTERS(Pointer[][] walkPointersin, Integer depth, Label label1, Label
label2)

walkPointersout = Pointer[][]
for i = 1, ..., n do

for ptr ∈ walkPointersin[i] do
for (ptr.current, v) ∈ EGi

do
if l(v) = label1 ∧ l

(

(ptr.current, v)
)

= label2 then
if depth 6= 5 ∨ v = ptr.start then
walkPointersout[i].addPointer(start = ptr.start, current = v)

end if
end if

end for
end for

end for
return walkPointersout

Algorithm 4 Sub-routine 3 : update Gram matrix

UPDATEGRAM(Pointer[][] walkPointers, Float [][] K)

for i = 1, ..., n do
for j = 1, ..., n do

if walkPointers[i] 6= [] ∧ walkPointers[j] 6= [] then
K[i][j] = K[i][j] + walkPointers[i].size() × walkPointers[j].size()
if i 6= j then
K[j][i] = K[j][i] + walkPointers[i].size() × walkPointers[j].size()

end if
end if

end for
end for
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TRAIN TEST
Pos Neg Pos Neg

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110

Table 4.1: Basic information about the datasets considered.

available datasets 2:

• the BZR dataset, a set of 405 ligands for the benzodiazepine receptor,

• the COX dataset, a set of 467 cyclooxygenase-2 inhibitors,

• the DHFR dataset, a set of 756 inhibitors of dihydrofolate reductase,

• the ER dataset, a set of 1009 estrogen receptor ligands.

These datasets contain the 3D structures of the molecules, together with a quantita-
tive measure of their ability to inhibit a biological mechanism. The reference paper
(Sutherland et al., 2003) presents a data preparation scheme sought to mimic a real
virtual screening application: datasets were first filtered to prevent structural redun-
dancy in the compounds considered, and were further split in training and test sets
such that the compounds used for testing are as structurally different as possible to
those used for training. In order to have a reference result to compare to, we kept this
particular data preparation scheme. Table 4.1 gathers basic informations about the
datasets involved in the study.

4.5.2 Experimental setup

We investigated in this study a simple labeling scheme to describe each atom (hy-
drogen atoms were systematically removed), and therefore the potential pharma-
cophores: the label of an atom is composed of its type (e.g., C, O, N ...) and the
sign of its partial charge (+,− or 0). Hence the set of labels can be expanded as
L = {C+, C0, C−, O+, O0, O−, . . .}. The partial charges account for the contribution
of each atom to the total charge of the molecule, and were computed with the QuacPAC
software developed by OpenEye 3. It is important to note that, contrary to the physic-
ochemical properties of atoms, partial charges depend on the molecule and describe
the spatial distribution of charges. Although the partial charges take continuous val-
ues, we simply kept their signs for the labeling as basic indicators of charges in the

2Available as supporting information of the original study at
http://pubs.acs.org/journals/jcisd8/

3http://www.eyesopen.com/products/applications/quacpac.html
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description of pharmacophores. We call categorical kernel the kernel resulting from
this labeling, where the kernel between labels KFeat is the Dirac kernel (4.7) and the
kernel between distances KDist is the Gaussian RBF kernel (4.6).

Alternatively, we tested several variants of this basic categorical kernel. On the
one hand, we tested the effect of the partial charges by removing them from the labels,
and keeping the same Dirac and Gaussian RBF kernels for the labels and distances,
respectively. In this case the label of an atom reduces to its type. On the other hand,
we tested the fast approximation and its two-points counterpart mentioned in Section
4.4 with our original labeling scheme, that is, atoms labeled by their types and the
sign of their partial charges.

In addition, we tested the state-of-the-art Tanimoto kernel based on the 2D struc-
ture of molecules (Ralaivola et al., 2005) to evaluate the potential gain obtained by
including 3D information. This kernel is defined as the Tanimoto coefficient between
fingerprints indicating the presence or absence of all possible molecular fragments of
length up to 8 in the 2D structure of the molecule, where a fragment refers to a se-
quence of atoms connected by covalent bonds. We note that this fingerprint is similar
to classical 2D-fingerprints such as the Daylight representation4, with the difference
that our implementation does not require to fold the fingerprint into a small-size vector.

The different kernels were implemented in C++ within the open-source ChemCpp
toolbox5, and the SVM experiment was conducted with the open-source Python ma-
chine learning package PyML6. For each experiment, all parameters of the kernel and
the SVM were optimized over a grid of possible choices on the training set only, to
maximize the mean AUC (see Section 1.3.1) over an internal 10-fold cross-validation.
The results on the test set correspond to the performance of the SVM with the se-
lected parameters only. The optimized parameters include the width σ ∈ {0.1, 1, 10}
(in angstroms) of the Gaussian RBF kernel used to compare distances, the soft-margin
parameter of the SVM over the grid {0.1, 0.5, 1, 1.5, ..., 20}, and the number of bins used
to discretize the distances for the fast approximations over the grid {4, 6, 8, . . . , 30}.

4.5.3 Results

Table 4.3 shows the results of classification for the different kernel variants. Each
line corresponds to a kernel, and reports several statistics : the accuracy (fraction of
correctly classified compounds), sensitivity (fraction of positive compounds that were
correctly classified), specificity (fraction of negative compounds that were correctly
classified), and AUC. The first line corresponds to the basic categorical kernel. The
following three lines show the results of the variants of the categorical kernel: the
reduction of the atom labels to their types (i.e., categorical kernel without partial
charges), and the fast approximation of the kernel (i.e., three-points spectrum kernel),
together with its two-points counterpart. Finally, we added the performance obtained

4http://www.daylight.com/dayhtml/doc/theory/theory.toc.html
5Available at http://chemcpp.sourceforge.net
6Available at http://pyml.sourceforge.net
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by the state-of-the-art 2D Tanimoto kernel, based on the 2D structure of the molecules,
and the best results reported in the reference publication (Sutherland et al., 2003).
This latter method, labeled ”Sutherland” in table 4.3, is based on descriptors inherited
from the 2D structure and the atomic composition of the molecules, that are selected
using a genetic algorithm.

The results of parameters optimization on the training set often led to similar
choices for different kernels. For example, the width of the Gaussian RBF kernel to
compare distances was usually selected at 0.1 angstrom, which corresponds to a very
strong constraint on the pharmacophore matching. Finally, the number of bins selected
by the fast approximations to discretize the distances was usually between 20 and 30
bins.

We can first observe from table 4.3 that removing the partial charges from atom
labels decreases the accuracy by 2 to 4%, corresponding to a relative variation of 3 to
5%, on all datasets except COX. This superiority in accuracy of the categorical kernel
is significant at a p-value p = 0.125, according to the one-sided Wilcoxon signed-rank
test for paired data (Demšar, 2006) based on the accuracy statistic, which suggests
that the partial charge information is important for the definition of pharmacophores.

Moreover, the fast pharmacophore kernel obtained by applying a Dirac kernel to
check when pairs of candidate pharmacophores fall in the same bin of the discretized
space (three-points spectrum kernel) systematically degrades the accuracy by 1 to 5%,
corresponding to a relative variation of 1 to 6%, over all four datasets compared to
the categorical kernel. This is significant at a p-value p = 0.062, and suggests that
the gain in computation time obtained by discretizing the space and computing a 3D-
fingerprint-like representation of molecules has a cost in terms of accuracy of the final
model. A particular limitation of the fingerprint-based method is that two pharma-
cophores could remain unmatched if they fall into two different bins, although they
might be very similar but close to the bins boundaries. In the case of the pharma-
cophore kernel, such pairs of similar pharmacophores would always be matched.

We observe finally that except for the COX dataset, the discrete kernel based
on two-points pharmacophores lead to worse accuracy results than its three-points
counterpart. This tends to highlight the benefits of the three-points pharmacophore
characterization of the molecular structure, but this is only significant at a p-value
p = 0.312.

For each dataset, the results obtained with the 2D-Tanimoto kernel are significantly
worse than those of the categorical kernel, with a decrease ranging from 3 to 7%,
corresponding to a relative variation of 3 to 10%, on the different datasets. This is
significant at a p-value p = 0.062 and confirms the relevance of 3D information for drug
activity prediction, that motivated this work. Finally we note that on all but the COX
dataset, the categorical kernel outperforms the best results of Sutherland et al. (2003).
This tends to confirm the competitiveness of our method compared to state-of-the-art
methods, but these latter results are only significant at a p-value p = 0.312.

Regarding the computational complexity of the different methods, Table 4.2 shows
the time required to compute the kernel matrices on the BZR training set for different
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Exact Discrete
With charges 20’ 6’
Without charges 249’ 7’

Table 4.2: Computation times in minutes needed to compute the different kernel ma-
trices on the BZR training set. The first column refers to the computation of the exact
kernel (4.3), and the second one to the approximate kernel (4.11).

kernels, on a desktop computer, equipped with a Pentium 4 - 3.6 GHz processor, and
1 GB RAM. In the discrete version, the distance range was split into 24 bins, and as
expected, the kernels based on the discretization of the pharmacophore space are faster
than their counterparts by a factor of 4 to 35, depending on the type of labels used
(with or without the partial charge information). In the exact kernel computation, the
effect of removing the partial charges from the labels is to induce more matches between
atoms and therefore, as discussed in Section 4.2, to drastically slow the computation
by a factor of 12, consistent with the theoretical estimate that dividing the size of the
label classes by k increases the speed by a factor k3.

4.6 Discussion and conclusion

This paper presents an attempt to extend the application of recent machine learning
algorithms for classification to the manipulation of 3D structures of molecules. This
attempt is mainly motivated by applications in drug activity prediction, for which
3D pharmacophores are known to play important roles. Although previous attempts
to define kernels for 3D structures (similar in fact to the two-points spectrum kernel
we tested) led to mixed results (Swamidass et al., 2005), we obtained performance
competitive with state-of-the-art algorithms for the categorical kernel based on the
comparison of pharmacophores contained in the two molecules to be compared. This
kernel is not an inner product between fingerprints, and therefore fully exploits the
mathematical trick that allows SVM to manipulate measures of similarities rather than
explicit vector representations of molecules, as opposed to other methods such as neu-
ral networks. We even observed that for the closest fingerprint-based approximation
obtained by discretizing the space of possible pharmacophores (three-points spectrum
kernel), the performance significantly decreases. This highlights the benefits that can
be gained from the use of kernels, which provide a satisfactory answer to the common
issue of choosing a “good” discretization of the pharmacophore space to make finger-
prints: once discretized, pharmacophores falling on different sides of bins edges do not
match although they might be very close. We notice that approaches based on fuzzy
fingerprints (Horvath and Jeandenans, 2003), for example, aim at correcting this effect
by matching pharmacophores based on different distance bins.

Among the possible extensions to our work, a promising direction that is likely
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to be relevant for many real-world applications is to take into accounts different con-
formers of each molecule. Indeed, it is well-known that the biological activity to be
predicted is often due to one out of several conformers for a given molecule, which
suggests to represent a molecule not as a single 3D structure but as a set of struc-
tures. This problem, known as multi-instance learning, has been drawing considerable
interest in the machine learning community since its initial formulation (Dietterich
et al., 1997). The SVM and kernel approaches lend themselves particularly well to this
extension, thanks to the possibility to define kernels between sets of structures from a
kernel between structures (Gärtner et al., 2002), and extensions of the SVM algorithm
(Andrews et al., 2002). A second direction would be to test and validate different
definitions and labeling for the vertices of the pharmacophores. We limited ourselves
to the simplest possible three-points pharmacophores based on single atoms annotated
by their types and partial charges. The method could be improved by testing other
schemes known to be relevant features as basic components of pharmacophores. It is
for example possible to consider groups of atoms forming functional units instead of
single atoms to form pharmacophores. Alternatively, the atom labels considered in
this work may be enriched with the introduction of various physicochemical properties
known to account for the steric and electrostatic behavior of atoms. As a first step in
this direction, we investigated a labeling scheme based on a set of four physicochemi-
cal properties (namely the atomic Van der Waals and covalent radii, electronegativity
and first ionization energy) but the corresponding results were not convincing: they
were globally similar to those obtained with atom types labels without partial charges.
This is actually not really surprising because these properties are deduced from the
atom types, and therefore bear little additional information, contrary to the partial
charges which depend on the molecular conformation. A third possible extension is
to generalize this work to pharmacophores with more points, e.g., 4 or 5. Although
several results will not remain valid in this case, such as the expression of the kernel
as the trace of a matrix, this could lead to more accurate models in cases where the
binding mechanism is well characterized by such pharmacophores. Finally, we note
that several approaches were recently proposed to derive a measure of similarity be-
tween structured objects from the similarity of their substructures(Cuturi and Vert,
2005; Wolf and Shashua, 2003; Jebara et al., 2004). These approaches could generalize
the present work to alternative measures of similarity between 3D structures based on
pharmacophore similarity.
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BZR COX DHFR ER
Acc. Sens. Spec. AUC Acc. Sens. Spec. AUC Acc. Sens. Spec. AUC Acc. Sens. Spec. AUC

Categorical 76.4 74.0 78.9 82.1 69.8 69.8 69.8 75.1 81.9 63.3 88.8 84.8 79.8 72.0 84.7 86.8
Categorical, no partial charges 74.3 73.6 75.0 81.5 70.0 68.5 70.9 74.6 78.1 65.2 82.7 82.2 77.6 71.7 81.4 87.2
Three-points spectrum 75.4 74.4 76.3 81.3 67.0 64.4 69.5 75.9 76.9 70.9 79.0 81.9 78.6 78.3 78.8 87.4
Two-points spectrum 71.4 61.3 81.6 80.3 68.9 70.2 67.7 74.7 67.7 67.4 67.9 72.3 78.7 75.9 80.4 84.5
2D-Tanimoto 71.2 71.9 70.5 80.8 63.0 67.5 58.6 69.8 76.9 73.8 78.0 83.0 77.1 69.3 82.1 83.6
Sutherland et al. (2003) 75.2 70.0 81.0 XXX 73.6 75.0 72.0 XXX 71.9 74.0 71.0 XXX 78.9 77.0 80.0 XXX

Table 4.3: Classification of the test sets, after model selection on the training set.



Conclusion

The achievements of this thesis suggest, in our opinion, that the kernel approach looks
promising to model Structure-Activity Relationships. Moreover, we believe that kernel
functions between molecular structures may offer, to some extent, a unified approach
to SAR and virtual screening, for two reasons. First, because they circumvent the need
for selecting and extracting molecular descriptors, such kernels can straightforwardly
be used to model different biological properties. Second, because of the modularity of
kernel methods, these kernels can be used in conjunction with several existing kernel
algorithms, in order to solve various tasks such as, for instance, regression, clustering
and similarity analysis. However, this thesis has to be seen as a preliminary study,
that should be validated by other experiments, involving for instance different learning
problems and other databases. In particular, because large databases are commonplace
in chemoinformatics, the kernel approach would benefit from a large-scale validation
involving larger databases than those that have been considered in this thesis. Con-
cerning the practical use of our approach for screening of large datasets, we observed
that the approach based on kernel methods can be computationally demanding even
for relatively small datasets. In practice, the time to train SVM can be reduced because
not all entries of the matrix are required. Speeding up SVM and kernel methods for
large datasets is currently a topic of interest in the machine learning community, and
applications in virtual screening on large databases of molecules will certainly benefit
from the advances in this field.

We see several possible extensions to our work. On the practical side, the fact that
the models could benefit from simple graph enrichments based on Morgan indices and
partial charges, suggests that the introduction of a more thorough chemical knowledge
may improve the expressive power of the kernels. In particular, several reduced rep-
resentations of molecular structures exist, defined, for instance, by merging aromatic
cycles and atoms part of the same functional groups in the 2D representation (Gillet
et al., 2003), and in the 3D case by considering pharmacophoric features instead of iso-
lated atoms (Pickett et al., 1996). Applying such transformations in a pre-processing
step is likely to improve the characterization of the molecular structures in the kernels,
and at the same time reduce their computation cost, that depends on the size of the
graphs to be compared. On the methodological side, different ways are probably worth
exploring. A first extension would be to adopt a global representation of molecules
and integrate information derived from their 1D, 2D and 3D structures. A possible
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approach toward this goal would be to consider a single kernel defined as a linear
combination of kernels for 2D and structures, together with simple kernels based on
global physicochemical properties. Several methods have been proposed in order to
optimize such a kernel combination based, for instance, on semi-definite programming
(Lanckriet et al., 2004). Another important extension to the pharmacophore kernel
would be to consider a multi-conformers representations of 3D molecular structures.
Indeed, the restriction to a single conformation is clearly an unrealistic assumption,
and we believe that this extension is likely to make sense for real-world applications.
On the methodological side, the introduction of multi-conformers would cast the learn-
ing problem into the framework of multiple-instance learning, and, as suggested at the
end of Chapter 4, the SVM and kernel approaches lend themselves well to this exten-
sion. In particular, the pharmacophore kernel could be extended to a kernel between
sets of structures using the framework of multi-instance kernels (Gärtner et al., 2002),
or alternatively, it could used directly in conjunction with a multi-instance extension
of the SVM algorithm (Andrews et al., 2002). We note also that real-world appli-
cations based on a sequential screening process, could benefit from advances in the
transductive and active approaches to learning, that were initially introduced for vir-
tual screening applications by Weston et al. (2003) and Warmuth et al. (2003). These
two approaches might in particular be used in conjunction in order to prioritize the
screening of pre-defined virtual libraries. Finally, we believe that this work can find
many other applications in various domains where data naturally come as graphs, such
as bioinformatics, natural language processing or digital image analysis for instance.
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