Remarques sur les équations générales du Krigage.

I. Les équations générales du Krigage.

Enoncé sous sa forme la plus générale, le problème du Krigage peut se formuler de la manière suivante : on a prélevé n échantillons S_1, S_2, \ldots, S_n dont les teneurs (connues) sont x_1, x_2, \ldots, x_n. En déduire le meilleur estimateur linéaire z^*, soit :

$$
(1) \quad z^* = \frac{\sum_{i=1}^{n} a_i x_i}{n}
$$

de la teneur réelle z (inconnue) d'un panneau P, connaissant la forme, les dimensions et l'implantation relative de P, S_1, S_2. Le gisement est supposé homogène et doué d'une loi de dispersion intrinsèque $\gamma(r)$ permettant le calcul de toutes les variances et covariances des teneurs de P, S_1, S_2, \ldots, S_n.

On sait que l'on peut toujours résoudre effectivement ce problème en déterminant les coefficients a_i de l'équation (1) par deux conditions. La première condition exprime que z^* et z doivent avoir même valeur moyenne dans un grand gisement, et s'écrit :

$$
(2) \quad \sum_{i=1}^{n} a_i = 1
$$

La deuxième condition est une condition de variance minimum. Elle exprime que les a_i ont des valeurs telles – compte tenu de la condition impérative (1) – que la variance $D^2(z^*-z)$ soit minimum. Or, d'après (1), cette variance a pour expression :

$$
(3) \quad D^2(z^*-z) = 6^2 z - 2 \sum_{i=1}^{n} 6z x_i + \sum_{i,j} \frac{c_i}{i,j} a_i a_j 6_{i,j}
$$

On a posé, pour abréger, $6_{i,j} = 6_{iixj}$ pour la covariance des teneurs x_i.
et x_j des échantillons S_i et S_j. En particulier, on notera :

$$6_{ii} = 6_{xi} x_i = 6_{x1} = \text{Variance de } x_i$$

On exprime que cette variance est minima compte tenu de la condition de liaison (2) en écrivant les conditions du minimum de l'expression :

$$D^2 (z-z^*) = 2 \lambda \frac{\xi}{\lambda} a_i$$

le paramètre de Lagrange λ, étant déterminé par la condition (2) elle-même. Il suffit donc d'annuler les dérivées partielles de cette expression vis-à-vis de chacun des a_i, et d'ajouter la condition (2) pour obtenir un système de n+1 équations linéaires permettant de calculer effectivement les n+1 inconnues a_i et λ. Ce système s'écrit :

$$\left\{ \begin{array}{l}
\sum_j a_j 6_{ij} = 6zx_i + \lambda \\
\sum_j a_j = 1
\end{array} \right. \quad (i = 1, 2 \ldots n)$$

(4)

II. Forme tensorielle des équations du Krigeage.

Nous pouvons interpréter les x_i, que nous écrirons, dans ce paragraphe x_i, en plaçant l'indice i en position supérieure, comme les composantes controvariantes d'un vecteur "tensor" X dans un espace à n dimensions. L'estimateur z^* de la formule (1) doit être considéré comme un scalaire. Autrement dit, les paramètres de Krigeage a_i doivent être interprétées comme les composantes covariantes d'un vecteur A. L'estimateur z^* n'est alors autre que le produit scalaire \overline{X}

$$z^* = a_i x_i$$

Cela signifie que, si l'on effectue sur les x_i la substitution linéaire :

$$x^{i'} = A^{i'}_i x^i$$

les a_i doivent se transformer suivant la loi :

$$a_{jl} = A^i_{jl} a_i$$

de manière que le scalaire $z^* = a_i x_i = a_{jl} x^{j'}$ reste invariant.
Pour interpréter l'équation (3) et les relations (4), nous remarquerons que, si l'on désigne par m la teneur moyenne générale du grand gisement, il est loisible de remplacer x^i, z et z^* par $(x^i - m)$, $(z - m)$ et $(z^* - m)$.

La condition (2) nous garantit que m n'intervient pas réellement, en particulier on peut supposer $m = 0$. Une covariance 6_{xixi}, considérée comme valeur moyenne d'un produit $(z - m)(x^i - m)$, se comporte dans une substitution linéaire comme la coordonnée contravariante d'un vecteur V.

\[(4) \quad u^i = 6_{zxi} \]

et de même, une covariance $6_{ij} = 6_{iji}$ considérée comme valeur moyenne d'un produit $(x^i - m)(x^j - m)$ se comporte comme la composante doublement contravariante d'un tenseur R.

\[(5) \quad R^i_{ij} = 6_{ij} \]

Pour interpréter la condition (2), on introduira le vecteur ayant dans le système de coordonnées x^i - les composantes contravariantes $H^i = H^i = \ldots = H^i = 1$.

Le système (4) s'écrit alors :

\[
\begin{align*}
 a_j R^i_{ij} &= u^i + \lambda H^i \\
 a_j H^j &= 1
\end{align*}
\]

(6)

Enfin, nous pouvons donner l'espace à n dimensions de la métrique définie par le tenseur fondamental $g_{ij} = R_{ij}$. Alors - dans cette métrique - l'expression $a_j R^i_{ij} = a_j g_{ij} = a_i$ représente la composante contravariante du vecteur A. Les équations (6) s'écrivent vectoriellement :

\[
\begin{align*}
 \vec{A} &= \vec{V} + \vec{H} \\
 A \cdot H &= 1
\end{align*}
\]

La deuxième exprime que l'extrémité du vecteur A se déplace dans un plan perpendiculaire à H, et la première exprime que A est la projection sur ce plan du vecteur V. On a de plus - en multipliant par \vec{H} la première équation :
(8) \[\mathcal{A} \mathcal{H}^2 = 1 - \bar{U} \mathcal{H} \]

De fait, la variance (3) se met sous la forme :
\[D^2 (z-z^*) = \sigma^2 z - V^2 + (A - V)^2 \]
et prend sa valeur minimum, compte tenu de (2), lorsque A est la projection de V sur un tel plan. La solution du problème de Krigeage est alors donnée par les composantes covariantes du vecteur A, soit :

\[
\begin{align*}
\mathcal{A} &= u_i + \lambda H_i = \varepsilon_{ij} (u_i + \lambda H^j) \\
\mathcal{A}^{-1} &= 1 - \varepsilon_{ij} \frac{u_i H^j}{H_i H^j} \\
A &= \frac{1}{\mathcal{H}^2} (\mathcal{H} + H) \quad (U \mathcal{H})
\end{align*}
\]

On en déduit facilement :
\[a_i = H_i + H^j (u_i H_j - U_j H_i) / H_j H^j \]

Où, vectoriellement :

\[
\begin{align*}
\overline{A} &= \frac{1}{\mathcal{H}} (\mathcal{H} + H) (U \mathcal{H}) \\
\overline{A} &= \mathcal{H} + H^2 \quad (U \mathcal{H}) \quad H
\end{align*}
\]

Au lieu du système \(x_i \), on peut utiliser pour les coordonnées contravariantes un autre système de référence dans lequel le même axe de coordonnées coïnciderait avec le vecteur H. Par exemple, on fera la substitution :

\[
\begin{align*}
y_i &= x_i - \overline{x} \quad \text{pour } i = 1, 2, \ldots, n-1 \\
y^n &= \overline{x} = x^1 + x^2 + \ldots + x^n / n
\end{align*}
\]

Dans ce système, les coordonnées de H sont \(H_{ii} = 0 \) pour \(i = 1, 2, n-1 \) et \(H_{1n} = 1 \). La condition (2) s'écrit alors simplement :

\[a_{1n} = 1 \]

Cela signifie que l'estimateur \(z^* \) prend la forme :

\[z^* = \overline{x} + \frac{1}{n-1} (x_i - \overline{x}) \]
Dans ce système, les équations (8) deviennent :

\[
\begin{align*}
a_i^1 &= u_i^1 & i = 1, 2 \ldots n - 1 \\
a_n^1 &= 1
\end{align*}
\]

et \(\delta \) disparaît.

Quel que soit le système de coordonnées adoptées, on voit que le problème est résolu si l'on sait passer des coordonnées contravariantes \(u_i \) aux coordonnées covariantes \(u_i \), c'est-à-dire si l'on connaît la matrice \(g_{ij} \) inverse de \(g^{ij} \). Elle se calcule par la résolution du système linéaire :

\[
(9) \quad g_{ij} g^{jk} = \xi_i^k = 1 \text{ si } k = i \\
\quad = 0 \text{ si } k \neq i
\]

Le déterminant des \(g_{ij} \) n'est jamais nul. S'il était nul, en effet, il y aurait une relation linéaire fonctionnelle entre les tenseurs \(x_i \).

La résolution de (9) est donc toujours possible. On remarquera que la solution \(g_{ij} \) est indépendante des \(u_i \), c'est-à-dire des covariances \(6_{ii} \). Cela signifie que les paramètres de Krigeage \(a_i \) s'expriment par des fonctions linéaires des covariances \(6_{ii} \), les coefficients de ces fonctions étant indépendants des \(6_{ii} \), et ne dépendant que des covariances des \(x_i \) et des \(x_j \), c'est-à-dire de la disposition des \(n \) échantillons \(S_i \) entre eux. Les mêmes fonctions linéaires serviront à kriger un panneau quelconque à partir des \(n \) échantillons \(i \). Nous en verrons un exemple au dernier paragraphe.

III. Forme pratique de ces équations.

En pratique, on partira du système (4) et on fera jouer un rôle particulier à l'échantillon \(n \). On choisira, lorsque cela sera possible, un échantillon occupant une position privilégiée vis à vis des \(n-1 \) autres - une position centrale par exemple comme sur le schéma ci contre. On écrira la condition (2) sous la forme :

\[
(10) \quad a_n = 1 - \sum_{i=1}^{n-1} a_i
\]

et on éliminera partout \(a_n \). A partir de maintenant, les indices \(i, j \ldots \) de nos formules ne prendront plus que
les valeurs 1, 2... n-1, et les sommes ne seront faites que de 1 à n-1. Les équations (4) s'écriront :

\[
\begin{align*}
\sum_j a_{ij} 6_{ij} + a_{nn} 6_{in} &= 6_{zxi} + \lambda \\
(i &= 1, 2, \ldots n-1) \\
\sum_j a_{nj} 6_{nj} + a_{nn} 6_{nn} &= 6_{zxn} + \lambda \\
(i &= n)
\end{align*}
\]

(11)

On soustrait la dernière équation (11) des (n-1) premières, de manière à éliminer \(\lambda \), et on remplace \(a_n \) par sa valeur (10).

Si l'on pose :

\[
\begin{align*}
R_{ij} &= 6_{ij} - 6_{nj} - 6_{ni} + 6_{nn} \\
N_i &= 6_{zxi} - 6_{zxn} - 6_{in} + 6_{nn}
\end{align*}
\]

(12)

on obtient le système linéaire de n-1 équations à n-1 inconnues :

\[
\sum_j a_{ij} R_{ij} = N_i
\]

(13)

donc la résolution, jointe à (10), fournit les paramètres de Krigeage.

Si l'on remarque que la variance (3), après le remplacement de \(a_n \) par sa valeur (10), prend la forme :

\[
D^2 (z^* - z) = 6^2 z - 2 6_{zxn} + 6_{xn} - 2 \sum_i a_i N_i + \sum_{ij} a_i a_j R_{ij}
\]

(14)

en voit que, lorsque les paramètres de Krigeage \(a_i \) prennent les valeurs correspondant au système (13), la variance peut se calculer par la formule simple :

\[
D^2 (z^* - z) = 6^2 z - 2 6_{zxn} + 6_{xn} - \sum_i a_i N_i
\]

(15)

Cette expression – déjà rencontrée dans la Note 31 pour \(n = 3 \) – facilite grandement le calcul numérique de la variance de Krigeage.

Enfin, on remarquera que le premier membre de (13) est indépendant des \(N_i \). Il ne dépend que des covariances 6_{ij} des n échantillons entre eux – et non pas de leurs covariances avec le panneau z à estimer.

La solution générale de (13) se met sous la forme :
\[a_j = \frac{1}{i} P_{ij} N_i \]
dans laquelle la matrice \(P_{ij} \) ne dépend que des \(n \) échantillons, et non pas du panneau ; celui-ci n'intervient que par les \(N_i \). La même matrice \(P_{ij} \) sert donc au Krigage de n'importe quel panneau par les \(n \) échantillons donnés.

IV. Exemple.

Imaginons un gisement stratiforme, reconnu par sondages à maille hexagonale et destiné à être exploité en carrière. Pour maintenir à peu près constante la teneur du minerai livré, on s'efforce d'exploiter simultanément deux ou plusieurs gradins de teneurs complémentaires. On a donc besoin, pour établir le programme d'exploitation, d'estimer à l'avance la teneur de parallélépipède correspondant aux futurs gradins et occupant une position quelconque vis à vis du réseau de sondage. On peut, par exemple, Kriger le gradin par les 7 sondages les plus proches. Comme, dans (16), les \(P_{ij} \) ne dépendent pas du gradin mais seulement de la disposition relative des 7 sondages, disposition qui ne varie pas, les \(P_{ij} \) sont calculés numériquement une fois pour toutes. Seuls les \(N_i \), qui dépendent de la position du gradin vis à vis des 7 sondages, doivent faire l’objet d’une tabulation.

Les \(N_i \) dépendent de quatre paramètres :

- 2 pour la position du centre de gravité du gradin.
- 1 pour l’orientation du gradin vis à vis du réseau.
- 1 pour la longueur du gradin (celui-ci étant assimilé à un échantillon linéaire.)

En général, les deux derniers paramètres seront fixés pour une exploitation donnée, et il suffira d’établir une fois pour toutes les abaques à deux paramètres donnant les \(N_i \) en fonction de la position du centre du gradin. On utilisera, par exemple, la formule (8) de la note 29.

Il reste à calculer les termes de la matrice \(P_{ij} \). Compte tenu des symétries de l’hexagone, montrons que les 21 termes de cette
matrice ne correspondent qu'à 4 termes réellement distincts. En effet, de la définition (12) et des symétries de l'hexagone, on déduit tout d'abord qu'il en est ainsi pour la matrice R_{ij} donnant le premier membre de (13), soit :

\[
\begin{align*}
1 & \quad 2 \\
\circ & \quad \circ \\
6 & \quad \circ \\
5 & \quad 4
\end{align*}
\]

\[
\begin{align*}
R_{12} = R_{23} = R_{34} = R_{45} = R_{56} = R_{61} \\
R_{13} = R_{24} = R_{35} = R_{46} = R_{51} = R_{62} \\
R_{14} = R_{25} = R_{36} \\
R_{11} = R_{22} = R_{33} = R_{44} = R_{55} = R_{66}
\end{align*}
\]

(17)

Si nous imaginons un panneau tel que tous les N_i soient nuls, à l'exception de N_1, l'équation (16) se réduit à :

\[a^i_j = P^{ij}_1 N_1\]

Si l'on fait tourner ce panneau de 60° autour du centre, alors, par symétrie ternaire, tous les N^i_i sont nuls sauf N^1_2 qui prend la valeur N_1 relative à la première configuration. Mais, également par symétrie, on a aussi :

\[a^{12} = a_1, \quad a^{13} = a_2 \quad \ldots \quad a^{16} = a_5, \quad a^{11}_1 = a_6, \quad \text{soit pour abréger } a^i_j = a^{i-1}_j. \quad \text{On a donc :}\]

\[a^i_j = P^{2j}_2 N_2 = P^{2j}_2 N_1 = a^{j-1}_j = P^{j-1}_1 N_1\]

D'où l'on déduit :

\[P^{2j}_2 = P^{1j}_1, \quad j-1\]

et, en réitérant cette rotation, on vérifie que les P_{ij} vérifient les mêmes relations (17) que les R_{ij}. Il suffit donc de calculer effectivement les quatre quantités P_{11}, P_{12}, P_{13} et P_{14}. Pour cela, nous écrirons les 6 équations (13) sous la forme suivante :
\[
\begin{cases}
R_{11} a_1 + R_{12} (a_2+a_6) + R_{13} (a_3+a_5) + R_{14} a_4 = N_1 \\
R_{11} a_2 + R_{12} (a_1+a_3) + R_{13} (a_4+a_6) + R_{14} a_5 = N_2 \\
R_{11} a_3 + R_{12} (a_2+a_4) + R_{13} (a_5+a_1) + R_{14} a_6 = N_3 \\
R_{11} a_4 + R_{12} (a_3+a_5) + R_{13} (a_6+a_2) + R_{14} a_1 = N_4 \\
R_{11} a_5 + R_{12} (a_4+a_6) + R_{13} (a_1+a_3) + R_{14} a_2 = N_5 \\
R_{11} a_6 + R_{12} (a_5+a_1) + R_{13} (a_2+a_4) + R_{14} a_3 = N_6
\end{cases}
\]

Nous poserons :
\[
\begin{cases}
I = a_1 + a_3 + a_5 \\
P = a_2 + a_4 + a_6
\end{cases}
\]

En ajoutant membre à membre les équations paires et impaires, on obtient le système :
\[
\begin{cases}
A I + B P = N_1 + N_3 + N_5 \\
B I + A P = N_2 + N_4 + N_6
\end{cases}
\]

avec :
\[
\begin{cases}
A = R_{11} + 2 R_{13} \\
B = R_{14} + 2 R_{12}
\end{cases}
\]

Mais d'autre part (19) et (16) permettent d'écrire :
\[
\begin{cases}
I = j \left(P_{1j} + P_{3j} + P_{5j} \right) N_j \\
P = j \left(P_{2j} + P_{4j} + P_{6j} \right) N_j
\end{cases}
\]

En portant dans (20) et en identifiant les coefficients des N_j on obtient (compte tenu des symétries (17) pour les P_{ij} :
\[
\begin{cases}
A \left(P_{11} + 2 P_{13} \right) + B \left(P_{14} + 2 P_{12} \right) = 1 \\
A \left(P_{13} + 2 P_{12} \right) + B \left(P_{11} + 2 P_{13} \right) = 0
\end{cases}
\]
D'où l'on tire :

\[
\begin{align*}
P_{11} + 2 P_{13} &= \frac{A}{A^2 - B^2} \\
2 P_{14} + 2 P_{12} &= \frac{B}{A^2 - B^2}
\end{align*}
\]

(23)

De même, en retranchant dans (18) la troisième équation de la première, et la sixième de la quatrième, on obtient :

\[
\begin{align*}
C (a_1 - a_3) + D (a_6 - a_4) &= N_1 - N_3 \\
C (a_6 - a_4) - D (a_1 - a_3) &= N_4 - N_6
\end{align*}
\]

(24)

avec :

\[
\begin{align*}
C &= R_{11} - R_{13} \\
D &= R_{12} - R_{14}
\end{align*}
\]

(25)

Si l'on remarque que l'on a :

\[
\begin{align*}
a_1 - a_3 &= \frac{\varepsilon}{j} (P_{1j} - P_{3j}) N_j \\
a_6 - a_4 &= \frac{\varepsilon}{j} (P_{6j} - P_{4j}) N_j
\end{align*}
\]

on obtient par identification dans (24) :

\[
\begin{align*}
P_{11} - P_{13} &= \frac{C}{C^2 - D^2} \\
P_{14} - P_{43} &= \frac{C}{C^2 - D^2}
\end{align*}
\]

(26)

Le système (23) (26) se résout aisément : on trouve :

\[
\begin{align*}
P_{11} &= \frac{1}{3} \frac{A}{A^2 - B^2} + \frac{2}{3} \frac{C}{C^2 - D^2} \\
P_{13} &= \frac{1}{3} \frac{A}{A^2 - B^2} - \frac{1}{3} \frac{C}{C^2 - D^2} \\
P_{12} &= \frac{-B}{3(A^2 - B^2)} - \frac{D}{3(C^2 - D^2)} \\
P_{14} &= \frac{-B}{3(A^2 - B^2)} + \frac{2D}{3(C^2 - D^2)}
\end{align*}
\]

(27)

Ces équations (27), jointes aux définitions (21) et (25) des ABCD.
- XI -

permettent de résoudre effectivement le krigage, pourvu que les Ni soient connus. On prendra pour estimateur \(z^* \) l'expression (1) qui peut s'expliciter comme suit :

\[
 z^* = x_n \left[1 - \left(\frac{1}{P_{11} + 2P_{12} + 2P_{13} + P_{14}} \right) \left(N_1 + N_2 + N_3 + N_4 + N_5 + N_6 \right) \right] + P_{11} \left(N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4 + N_5 x_5 + N_6 x_6 \right) + P_{12} \left(\frac{N_1 x_2 + N_2 x_3 + N_3 x_4 + N_4 x_5 + N_5 x_6 + N_6 x_1}{2} \right) + P_{13} \left(\frac{N_1 x_3 + N_2 x_4 + N_3 x_5 + N_4 x_6 + N_5 x_1 + N_6 x_2}{2} \right) + P_{14} \left(\frac{N_1 x_4 + N_2 x_5 + N_3 x_6 + N_4 x_1 + N_5 x_2 + N_6 x_3}{2} \right)
\]

(28)

Ou mieux, en mettant les \(x_i \) en facteur :

\[
 z^* = x_1 \left(N_{1,11} + 2N_{6,12} + 2N_{2,13} + N_{4,14} \right) + x_2 \left(N_{2,11} + 2N_{1,12} + 2N_{6,13} + N_{5,14} \right) + x_3 \left(N_{3,11} + 2N_{2,12} + 2N_{1,13} + N_{6,14} \right) + x_4 \left(N_{4,11} + 2N_{3,12} + 2N_{2,13} + N_{1,14} \right) + x_5 \left(N_{5,11} + 2N_{4,12} + 2N_{3,13} + N_{2,14} \right) + x_6 \left(N_{6,11} + 2N_{5,12} + 2N_{4,13} + N_{3,14} \right) + x_7 \left(1 - \left(\frac{1}{P_{11} + 2P_{12} + 2P_{13} + P_{14}} \right) \right) \left(N_1 + N_2 + N_3 + N_4 + N_5 + N_6 \right)
\]

(29)

V—Deuxième Exemple : maille carrée.

Examinons le même problème dans le cas d'une maille carrée.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

On cherchera d'estimer la teneur \(z \) d'un gradin quelconque à partir des teneurs des neuf sondages les plus proches, constituant un carré de 3 sur 3. Le problème est un tout petit peu plus difficile que pour la
maille hexagonale, puisque l'on a neuf sondages au lieu de sept et que
les symétries sont moins parfaites. On peut néanmoins procéder assez
facilement à l'inversion de la matrice des R_{ij} définis en (12).
Les $8 \times 9 = 36$ R_{ij}, tout d'abord, se réduisent à huit termes distincts.
Il résulte, en effet, des symétries de la figure les relations suivantes:

$$\begin{align*}
R_{11} &= R_{22} = R_{33} = R_{44} \\
R_{55} &= R_{66} = R_{77} = R_{88} \\
R_{12} &= R_{23} = R_{34} = R_{41} \\
R_{56} &= R_{67} = R_{78} = R_{85} \\
R_{15} &= R_{26} = R_{37} = R_{48} = R_{18} = R_{25} = R_{36} = R_{47} \\
R_{16} &= R_{17} = R_{28} = R_{27} = R_{35} = R_{38} = R_{45} = R_{46} \\
R_{13} &= R_{24} \\
R_{57} &= R_{68}
\end{align*}$$

(30)

On montre ensuite, comme dans le paragraphe précédent, que les P_{ij}
obéissent aux mêmes relations (30) de symétrie que les R_{ij}, et n'admet-
tent donc que 8 termes distincts. Il suffit d'imager un panneau tel
que N_1 seul soit différent de 0, et d'imprimer à la figure des rotations
de 90°, puis de recommencer le même raisonnement avec N_2 seul différent
de 0. On écrit ensuite, explicitement, les 8 équations (31) en tenant
compte de (30) : soit :

$$\begin{align*}
R_{11} a_1 + R_{12} (a_2 + a_4) + R_{13} a_3 + R_{15} (a_5 + a_8) + R_{16} (a_6 + a_7) &= N_1 \\
R_{12} (a_1 + a_3) + R_{11} a_2 + R_{13} a_4 + R_{15} (a_5 + a_6) + R_{16} (a_7 + a_8) &= N_2 \\
R_{13} a_1 + R_{12} (a_2 + a_4) + R_{11} a_3 + R_{16} (a_5 + a_8) + R_{15} (a_6 + a_7) &= N_3 \\
R_{12} (a_1 + a_3) + R_{13} a_2 + R_{11} a_4 + R_{16} (a_5 + a_6) + R_{15} (a_7 + a_8) &= N_4 \\
R_{15} (a_1 + a_2) + R_{16} (a_3 + a_4) + R_{56} a_5 + R_{56} (a_6 + a_8) + R_{57} a_7 &= N_5 \\
R_{16} (a_1 + a_4) + R_{15} (a_2 + a_3) + R_{56} (a_5 + a_7) + R_{55} a_6 + R_{55} a_8 &= N_6 \\
R_{16} (a_1 + a_4) + R_{15} (a_3 + a_4) + R_{57} a_5 + R_{56} (a_6 + a_8) + R_{55} a_7 &= N_7 \\
R_{15} (a_1 + a_4) + R_{16} (a_2 + a_3) + R_{56} (a_5 + a_7) + R_{57} a_6 + R_{55} a_8 &= N_8
\end{align*}$$

(31)
La solution générale est de la forme (16), les P_{ij} vérifiant les relations de symétries (30). On ajoutera, tout d'abord, membre à membre les quatre premières et les quatre dernières équations (31).

En posant :

$$\begin{align*}
A &= R_{II} + 2R_{I2} + R_{I3} \\
B &= 2(R_{I5} + R_{I6}) \\
C &= R_{55} + 2R_{56} + R_{57}
\end{align*}$$

(32)

on tombe sur le système :

$$\begin{align*}
A (a_1+a_2+a_3+a_4) + B (a_5+a_6+a_7+a_8) &= N_1 + N_2 + N_3 + N_4 \\
B (a_1+a_2+a_3+a_4) + C (a_5+a_6+a_7+a_8) &= N_5 + N_6 + N_7 + N_8
\end{align*}$$

qui se résout par les relations :

$$\begin{align*}
a_1+a_2+a_3+a_4 &= \frac{(N_1+N_2+N_3+N_4)C - (N_5+N_6+N_7+N_8)B}{AC - B^2} \\
a_5+a_6+a_7+a_8 &= \frac{(N_5+N_6+N_7+N_8)A - (N_1+N_2+N_3+N_4)B}{AC - B^2}
\end{align*}$$

(33)

On remplace ensuite les a_i par leur expression (16), compte tenu des relations de symétrie, et on identifie les coefficients des N_j. On obtient ainsi trois relations distinctes entre les P_{ij} :

$$\begin{align*}
P_{II} + 2P_{I2} + P_{I3} &= \frac{C}{AC - B^2} \\
P_{55} + 2P_{56} + P_{57} &= \frac{A}{AC - B^2} \\
2 (P_{I5} + P_{I6}) &= -\frac{B}{AC - B^2}
\end{align*}$$

(34)

En deuxième lieu, on forme les quatre sommes $N_1 + N_3$, $N_2 + N_4$, $N_5 + N_7$, et $N_6 + N_8$, et les deux différences $N_1 + N_3 - N_2 - N_4$ et $N_5 + N_7 - N_6 - N_8$.

En posant :

$$\begin{align*}
V &= R_{II} - 2R_{I2} + R_{I3} \\
V &= R_{55} - 2R_{56} + R_{57}
\end{align*}$$

(35)
On tombe sur le système suivant :

\[
\begin{aligned}
V (a_1 + a_3 - a_2 - a_4) &= N_1 + N_3 - N_2 - N_4 \\
V (a_5 + a_7 - a_6 - a_8) &= N_5 + N_7 - N_6 - N_8
\end{aligned}
\] (36)

On remplace alors dans (36) les \(a_j\) par leurs expressions (16), compte tenu de (30), ce qui fournit deux nouvelles relations distinctes entre les \(P_{ij}\) :

\[
\begin{aligned}
P_{II} + P_{I3} - 2 P_{I2} &= \frac{1}{V} \\
P_{55} + P_{57} - 2 P_{56} &= \frac{1}{V}
\end{aligned}
\] (37)

En troisième lieu, enfin, on forme les différences \(N_1 - N_3\), \(N_2 - N_4\), \(N_5 - N_7\) et \(N_6 - N_8\). En posant :

\[
\begin{aligned}
R_{15} - R_{16} &= D \\
R_{55} - R_{57} &= E \\
R_{II} - R_{I3} &= F
\end{aligned}
\] (38)

on obtient le système suivant :

\[
\begin{aligned}
F (a_1 - a_3) + D (a_5 + a_8 - a_6 - a_7) &= N_1 - N_3 \\
F (a_2 - a_4) + D (a_5 + a_6 - a_7 - a_8) &= N_2 - N_4 \\
D (a_1 + a_2 - a_3 - a_4) + E (a_5 - a_7) &= N_5 - N_7 \\
D (a_1 + a_4 - a_2 - a_3) + E (a_6 - a_8) &= N_6 - N_8
\end{aligned}
\] (39)

On remplace ensuite dans (39) les \(a_i\) par leurs expressions (16), compte tenu de (30) et on identifie les coefficients de \(N_1\) et \(N_5\), dans la première et la troisième : on tombe sur les quatre équations :

\[
\begin{aligned}
F (P_{II} + P_{I3}) + 2D (P_{I5} - P_{I6}) &= 1 \\
F (P_{I5} - P_{I6}) + D (P_{55} - P_{57}) &= 0 \\
D (P_{II} - P_{I3}) + E (P_{I5} - P_{I6}) &= 0 \\
2D (P_{I5} - P_{I6}) + E (P_{55} - P_{57}) &= 1
\end{aligned}
\]
De la première et de la troisième, on déduit :

\[
\begin{align*}
P_{11} - P_{13} &= -\frac{E}{2D^2 - EF} \\
P_{15} - P_{16} &= \frac{D}{2D^2 - EF}
\end{align*}
\]

(40)

De la deuxième et de la quatrième, de même :

\[
\begin{align*}
P_{55} - P_{57} &= -\frac{F}{2D^2 - EF} \\
P_{15} - P_{16} &= \frac{D}{2D^2 - EF}
\end{align*}
\]

(41)

Le système constitué par : (34), (37), (40) et (41) permet le calcul effectif de tous les \(P_{ij} \). On trouve ainsi :

\[
\begin{align*}
P_{11} &= \frac{1}{4} \frac{C}{AC - B^2} + \frac{1}{4V} - \frac{E}{2(2D^2 - EF)} \\
P_{12} &= \frac{1}{4} \frac{C}{AC - B^2} - \frac{1}{4V} \\
P_{13} &= \frac{1}{4} \frac{C}{AC - B^2} + \frac{1}{4V} + \frac{E}{2(2D^2 - EF)} \\
P_{15} &= -\frac{1}{4} \frac{B}{AC - B^2} + \frac{1}{3} \frac{D}{2D^2 - EF} \\
P_{16} &= -\frac{1}{4} \frac{B}{AC - B^2} - \frac{1}{3} \frac{D}{2D^2 - EF} \\
P_{56} &= \frac{1}{4} \frac{A}{AC - B^2} - \frac{1}{4V} \\
P_{55} &= \frac{1}{4} \frac{A}{AC - B^2} + \frac{1}{4V} - \frac{1}{2} \frac{F}{2D^2 - EF} \\
P_{57} &= \frac{1}{4} \frac{A}{AC - B^2} + \frac{1}{4V} + \frac{1}{2} \frac{F}{2D^2 - EF}
\end{align*}
\]

(42)

avec :

\[
\begin{align*}
A &= R_{11} + 2 R_{12} + R_{13} \\
B &= 2 (R_{15} + R_{16})
\end{align*}
\]
\[- \text{ XVI } - \]

\[C = R_{55} + 2 \ R_{56} + R_{57} \]

\[U = R_{11} - 2 \ R_{12} + R_{13} \]

\[V = R_{55} - 2 \ R_{56} + R_{57} \]

\[D = R_{15} - R_{16} \]

\[E = R_{55} - R_{57} \]

\[F = R_{11} - R_{13} \]

L'estimateur \(z^* \) de la teneur inconnue du panneau s'écrit alors explicitement :

\[
\begin{align*}
z^* = & \ x_1 \left(P_{11} \ N_1 + P_{12} \left(N_2 + N_4 \right) + P_{13} \ N_3 + P_{15} \left(N_5 + N_8 \right) + P_{16} \left(N_6 + N_7 \right) \right) \\ & + \ x_2 \left(P_{11} \ N_2 + P_{12} \left(N_3 + N_1 \right) + P_{13} \ N_4 + P_{15} \left(N_6 + N_5 \right) + P_{16} \left(N_7 + N_8 \right) \right) \\ & + \ x_3 \left(P_{11} \ N_3 + P_{12} \left(N_4 + N_2 \right) + P_{13} \ N_5 + P_{15} \left(N_7 + N_6 \right) + P_{16} \left(N_8 + N_5 \right) \right) \\ & + \ x_4 \left(P_{11} \ N_4 + P_{12} \left(N_1 + N_3 \right) + P_{13} \ N_6 + P_{15} \left(N_8 + N_7 \right) + P_{16} \left(N_5 + N_6 \right) \right) \\ & + \ x_5 \left(N_1 + N_2 \right) + P_{16} \left(N_3 + N_4 \right) + P_{55} \ N_5 + P_{56} \left(N_6 + N_8 \right) + P_{57} \ N_7 \\ & + \ x_6 \left(N_2 + N_3 \right) + P_{16} \left(N_4 + N_1 \right) + P_{55} \ N_6 + P_{56} \left(N_7 + N_5 \right) + P_{57} \ N_8 \\ & + \ x_7 \left(N_3 + N_4 \right) + P_{16} \left(N_1 + N_2 \right) + P_{55} \ N_7 + P_{56} \left(N_8 + N_6 \right) + P_{57} \ N_5 \\ & + \ x_8 \left(N_4 + N_1 \right) + P_{16} \left(N_2 + N_3 \right) + P_{55} \ N_8 + P_{56} \left(N_5 + N_7 \right) + P_{57} \ N_6 \\ & + \ x_9 \left(- \left(N_1 + N_2 + N_4 \right) \left(P_{11} + 2P_{12} + P_{13} + 2P_{15} + 2P_{16} \right) - \left(N_5 + N_6 + N_7 + N_8 \right) \right) \\ & + \ P_{55} + 2P_{56} + P_{57} + 2P_{15} + 2P_{16} \end{align*}
\]

Tout comme dans le cas de l'hexagone, les \(P_{ij} \), pour un gisement donné, seront calculés numériquement une fois pour toutes à l'aide de (42) et (43), tandis que les \(N_i \) devront faire l'objet d'une tabulation qui dépendra de deux paramètres si les gradins ont tous même dimension et même orientation.

\(--\cdots--\)