Variance géométrique sur une tranche ou un étage.

Étant donné un amas, géométriquement assimilable à un ellipsoïde, reconnu par n sections équidistantes, il a déjà été démontré que la variance relative $\frac{\sigma^2}{\bar{V}^2}$, donnant la précision avec laquelle le volume V de l'amas était estimé à partir des n sections d'aires S_1, S_2, S_n, avait pour expression. (cf. formules XI, 6).

\[(1) \quad \frac{\sigma^2}{\bar{V}^2} = \frac{1}{S_n^4} \]

Il peut être utile, aussi, de connaître la précision avec laquelle le volume d'une tranche ou d'un étage est estimé. Conformément à une terminologie proposée par M. CARLIER, nous désignerons par étage la portion du volume de l'amas comprise entre deux sections reconnues consécutives A et A', distantes de h, et par tranche le volume (TT') constitué par les deux demi-étages de relevée $h/2$ encadrant une section reconnue.

Nous raisonnnerons sur des développements en série de Fourier. La relevée totale H entre les deux sommets de l'ellipsoïde est prise comme unité de longueur, l'ellipsoïde est déformé par affinité de manière à coincider avec la sphère de rayon $1/2$, et l'origine des côtés z est prise au centre de l'ellipsoïde. Dans ces conditions, l'aire $S(z)$ de la section de côté z a pour valeur :

\[(2) \quad S(z) = T \left(1 - z \right) = \frac{1}{6} - \int_0^z \cos \frac{2\pi}{2} \frac{p^2}{z} \]

et la covariance $g(h)$ de deux sections $S(z)$ séparées par la relevée h a pour valeur :
(3) \[g(h) = \frac{1}{2} \int_0^\frac{\pi}{2} \cos \frac{2\pi}{p} dh = \frac{\pi^2}{8} - \frac{\pi^2 h^2(1-h)^2}{6} \]

En particulier, la variance \(s^2 \) de l'aire \(S(z) \) est :

(4) \[s^2 = g(0) = \frac{\pi^2}{180} \]

\(V = \frac{\pi}{6} \) étant le volume de la sphère. Une tranche de côté \(z \) et de relevée \(h \) a pour volume :

(5) \[v(z,h) = \int_{\frac{h}{2}}^{\frac{z+h}{2}} S(z) dz = \left[\frac{\pi}{6} - \frac{\pi}{6} \int_0^{\frac{z+h}{2}} \sin \frac{\pi}{p} \cos \frac{2\pi}{p} dz \right] h \]

Nous raisonnerons plutôt sur la section moyenne \(\frac{v(z,h)}{h} \) de cette tranche. L'erreur commise en assimilant cette section moyenne \(\frac{v(z,h)}{h} \) à la section centrale connue \(S(z) \) a pour variance :

(6) \[s^2_E = \frac{1}{h} \int_0^{\frac{h}{2}} \left(1 - \frac{\sin \frac{\pi}{p} h}{\frac{\pi}{p}} \right)^2 \frac{1}{\frac{\pi}{4} h} \]

Ceci n'est pas autre chose que (III, 15). On explicitera (6) en tenant compte des expressions (III, 17) des polynômes de Bernouilli. On aura ainsi :

\[\frac{1}{h} \int_0^{\frac{h}{2}} \frac{1}{\frac{\pi}{4} h} = \frac{\pi^2}{180} \]

\[\int_0^{\frac{h}{2}} \frac{\sin \frac{\pi}{p} h}{\frac{\pi}{4} h} = \frac{\pi^2}{15h} \left(\frac{h}{12} - \frac{5h^3}{24} + \frac{5h^4}{32} - \frac{h^5}{32} \right) \]

\[\frac{1}{h} \int_0^{\frac{h}{2}} \frac{\sin^2 \frac{\pi}{p} h}{\frac{\pi}{4} h^2} = \frac{\pi^2}{90h^2} \left(\frac{h^2}{2} - \frac{5h^4}{2} + \frac{3h^5}{2} - h^6 \right) \]

D'où, après simplification, l'expression de la variance d'extension d'une section à sa tranche d'influence :
Pour obtenir une formule applicable à un ellipsoïde quelconque, nous dividerons par le carré S^2 de la section moyenne $S = \frac{1}{6}$ de l'amas entier et nous remplacerons h par $1/n$: il vient ainsi :

$6_E^2 = S^2 \left(\frac{9}{20} \frac{1}{n^3} - \frac{1}{4} \frac{1}{n^4} \right)$

On remarquera que la variance $6_E^2 = \frac{7^2}{5n^4}$ sur l'estimation du volume total à partir des n sections ne s'obtient absolument pas en divisant par n la variance d'extension (7) d'une section dans sa zone d'influence. Elle est en $1/n^4$, mais sensiblement deux fois plus petite que 6_E^2. Pour des variables régionalisées à haute continuité géométrique, les erreurs commises sur l'estimation des différentes tranches à partir de leurs sections médianes ne peuvent plus être considérées comme indépendantes.

Pour un étage, il s'agit d'estimer le volume compris entre $z - \frac{h}{2}$ et $z + \frac{h}{2}$, connaissant les deux aires $S(z - \frac{h}{2})$ et $S(z + \frac{h}{2})$. On calculera d'abord :

$\frac{1}{2} \left[S(z - \frac{h}{2}) + S(z + \frac{h}{2}) \right] = \int \left[S_{2 \cdot \pi} \cos \varphi \cos 2 \cdot \pi \rho z \right]$ et l'on déduit de (5) la variance de l'erreur

$\int \left[\frac{v(z, h) - \frac{1}{2} \left(S(z - \frac{h}{2}) + S(z + \frac{h}{2}) \right)}{h^2} \right]$ soit :

$6^{2E1} = \frac{1}{2} \int \cos^2 \varphi h - \sin \varphi \cos \varphi h^2 + \frac{1}{\tau^2 p^4}$

On explicite (8) en tenant compte des expressions (III.17) des polynômes de Bernoulli. On trouve ainsi :

$\frac{1}{2} \int \frac{\cos^2 \varphi h}{\tau^2 p^4} = \frac{1}{4} \int \frac{1 + \cos 2 \pi \varphi}{\tau^4 p^4} = \frac{\pi^2}{180} \frac{h^2}{12} + \frac{\pi^3 h^3}{6} - \frac{\pi^4 h^4}{12}$
\[\sqrt{\frac{\sin\frac{\pi}{p} \cos\frac{\pi}{p}}{\pi^3 p}} = \frac{\pi^2}{2h} \sqrt{\frac{\sin 2\frac{\pi}{p} \cos\frac{\pi}{p}}{\pi^5 p}} \frac{\pi^2}{15h} \left[\frac{h}{6} - \frac{5}{3} \frac{h^3}{2} + \frac{5}{2} \frac{h^4}{2} - \frac{h^5}{2} \right] \]

\[\frac{1}{2} \sqrt{\frac{\sin^2\frac{\pi}{p} h^2}{\pi^4 p}} = \frac{\pi^2}{4h^2} \left[\frac{1 - \cos 2\frac{\pi}{p} \cos\frac{\pi}{p}}{\pi^6 p} \frac{\pi^2}{90h^2} \left[\frac{h^2}{2} - \frac{5}{2} \frac{h^4}{2} + \frac{3}{5} \frac{h^5}{5} - \frac{h^6}{6} \right] \right] \]

Après simplification, il reste :

\[\frac{2}{6} \frac{V^1}{n^3} = \frac{\pi^2}{30} \frac{h^3}{n^3} - \frac{2}{36} \frac{h^4}{n^4} \]

En introduisant la section moyenne \(S = \frac{1}{6} \), on écrit ce résultat sous la forme suivante, applicable à un ellipsoïde quelconque de section moyenne \(S \) :

\[6^2 V^1 = S^2 \left[\frac{6}{5} \frac{1}{n^3} - \frac{1}{n^4} \right] \]

Cette variance est en \(1/n^3 \), comme (7), mais a une valeur presque triple.

L'étage est connu avec une précision \(V3 = 1,7 \) fois moins bonne que la tranche : c'est bien un résultat de cet ordre que l'on devait s'attendre qualitativement, étant donnés les caractères de haute continuité géométrique de la fonction \(S(z) \).

Les formules (7) et (9) donnent l'erreur sur la section moyenne d'une tranche ou d'un étage. On passe à l'erreur sur le volume de la tranche ou de l'étage en multipliant par \(h^2 = \frac{1}{n^2} \) et en remplaçant \(S \) par le volume \(V \) total de l'amas, soit :

\[(7') \quad 6^2 E = V^2 \left(\frac{9}{20} \frac{1}{n^5} - \frac{1}{4} \frac{1}{n^4} \right) \]

\[(9') \quad 6^2 E' = V^2 \left(\frac{6}{5} \frac{1}{n^5} - \frac{1}{6} \frac{1}{n^6} \right) \]