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Abstract In oil industry and subsurface hydrology, geo-
statistical models are often used to represent the poros-
ity or the permeability field. In history matching of
a geostatistical reservoir model, we attempt to find
multiple realizations that are conditional to dynamic
data and representative of the model uncertainty space.
A relevant way to simulate the conditioned realizations
is by generating Monte Carlo Markov chains (MCMC).
The huge dimensions (number of parameters) of the
model and the computational cost of each iteration
are two important pitfalls for the use of MCMC. In
practice, we have to stop the chain far before it has
browsed the whole support of the posterior probabil-
ity density function. Furthermore, as the relationship
between the production data and the random field is
highly nonlinear, the posterior can be strongly multi-
modal and the chain may stay stuck in one of the modes.
In this work, we propose a methodology to enhance the
sampling properties of classical single MCMC in history
matching. We first show how to reduce the dimension
of the problem by using a truncated Karhunen–Loève
expansion of the random field of interest and assess
the number of components to be kept. Then, we show
how we can improve the mixing properties of MCMC,
without increasing the global computational cost, by
using parallel interacting Markov Chains. Finally, we
show the encouraging results obtained when applying
the method to a synthetic history matching case.
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1 Introduction

Conditioning the reservoir petrophysical properties,
e.g., permeability or porosity, to production data, such
as cumulative oil production, water cut, is a most chal-
lenging task. It consists in solving an ill-posed inverse
problem: given a prior knowledge on the random field
representing the petrophysical properties of the reser-
voir, in terms of parameters of a geostatistical model,
we aim to find multiple realizations of this model that
will exhibit the same dynamical behavior as the one
observed. In other words, we want to sample from the
posterior distribution defined in the Bayesian inversion
framework. The dynamical behavior of a given field is
computed by a fluid-flow simulator.

A unique realization of a conditioned field can be
found using optimization techniques to find the min-
imum of an objective function. Some parameteriza-
tion methods can simplify the problem by reducing
the dimension of the space where the optimization is
performed; see, e.g., [4, 13]. However, optimization
methods are not relevant to cope with uncertainty in
reservoir characterization. Although multiple optimiza-
tions can be performed and, hence, multiple condi-
tioned realizations can be found by this technique, the
uncertainties cannot be assessed clearly. Kitanidis [15]
and Oliver [20] proposed a method to characterize un-
certainty with optimization procedures, by perturbing
the dynamical data. This method implies to solve a huge
number of optimization problems to sample correctly
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the posterior. Moreover, their method is known to work
well with linear or quasilinear operators. The fluid-flow
models are often highly nonlinear, however.

The Bayesian formulation of the inverse problem,
see [27], shows that this problem can be viewed as a
classical statistical inference problem, where we want
to sample independent realizations from the posterior
distribution, known up to a constant, the posterior
being defined from the prior knowledge on the field
given by the geostatistical model and the data with its
associated measurement error.

The Monte Carlo Markov chains (MCMC) methods
seem therefore particularly suited for this problem, as
they are known to produce samples of virtually any
posterior distribution. Two problems then arise. On
one hand, the dimension of the problem is generally the
number of grid blocks on which is discretized the ran-
dom field, often several hundreds of thousands. There-
fore, the chain has to be run for an intractable number
of iterations to converge on this huge uncertainty space
and to achieve an efficient sampling of the posterior.
On the other hand, the computational cost of a single
fluid flow simulation makes the practitioner wish to
minimize the number of iterations.

MCMC methods already have a long story in history
matching; see [21] for a review. More recently, [6]
proposed to use the Langevin sampler coupled with
Karhunen–Loève (KL) expansion and a multiscale ap-
proach. This algorithm performs a rapid convergence to
the stationary regime but suffers from slow mixing as it
performs only a local exploration, as we will illustrate
later. In [12], the authors proposed to use adaptive
sampling: adjusting the proposal distribution along the
chain may improve convergence. However, in this set-
ting, the chain can be trapped into a local mode.

In this work, we first propose a way to reduce the
dimension of the inference problem using the KL [18]
expansion of geostatistical models. Secondly, we pro-
pose a method to improve the global efficiency of the
Markov Chain by generating a collection of chains in
parallel at different temperatures and allowing them to
interact.

The paper is organized as follows: In Section 2,
we formalize the inverse problem and introduce some
notations. In Section 3, we show how to reduce the
dimension of the problem by the use of a truncated KL
expansion of the random field of interest and assess the
number of components to be kept. In Section 4, we first
show some negative results given by classical MCMC
algorithms on inverse problems through a toy example.
We then introduce the principles of interacting Markov
Chains. We show on the previous inverse problem ex-
ample how they provide better mixing while reducing

the autocorrelation along the chain, with respect to
classical MCMC. In Section 5, we show the results
of the application of our methodology on a synthetic
history-matching case. The paper ends with conclusions
and perspectives of future work.

2 Notations

In this paper, we consider a Gaussian random field
(Xu)u∈U characterized by its mean μ and covariance �,
and indexed on U, the physical domain of the reservoir.
The permeability is considered log-normal and it is
computed as eX . The production data are denoted D∗
and the measurement error is considered Gaussian with
a mean zero and a covariance CD. The production data
are computed for a given random field X by a fluid-
flow simulator or forward operator F(X), including the
exponential function. With these notations, as given
in [27], the posterior distribution is known up to a
multiplicative constant independent of X:

P(X|D∗) ∝ e

(
− 1

2 ‖D∗−F(X)‖2
C−1

D
− 1

2 ‖X−μ‖2
�−1

)
, (1)

where e
(
− 1

2 ‖X−μ‖2
�−1

)
represents the prior probability

distribution up to a constant and e

(
− 1

2 ‖D∗−F(X)‖2
C−1

D

)
is

termed the likelihood function in the literature of in-
verse problems. The latter measures the misfit between
the production data computed for a given realization
X, F(X), and the one observed D∗.

3 Reducing the dimension with Karhunen–Loève
expansion

The KL expansion [18] is a parameterization method
based on the structural parameters of the random field
of interest, namely, its covariance operator. It consists
in representing the random field in a truncated basis of
its covariance operator eigenfunctions. This method as
been discussed as long ago as 1976; see [8]. Then, it was
addressed in [22] in a more realistic framework. This
method is regaining popularity in reservoir characteri-
zation applications since powerful computing facilities
allow us to employ it. Recently, such an application
has been done in [25], but addressing the problem of
choosing the number of components in a minimalist
way and considering the components of a non-Gaussian
random field as independent. An interesting work has
been done using it in [6], where it has been used
conjointly with a MCMC method. We can also cite
[5] where it is used in the ensemble Kalman filtering
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framework. In a previous work [24], we attempted to
assess the number of components that have to be used
in a fluid-flow application. After a brief summary of the
underlying theory, we recall some of our results.

3.1 Brief summary of the underlying theory

The principle of the KL expansion for Gaussian ran-
dom field is mainly based on the concept of reproducing
kernel Hilbert space (RKHS). Given Xu, u ∈ U a zero
mean second order real process with covariance �, the
RKHS H of X, or of kernel �, is the space of real
functions on U so that:

1. The vectorial space H0 generated by the functions
�(u, .) u ∈ U is dense in H.

2. For all function h of H,

h(u) =< h(·), �(u, ·) >,

where < h(·), g(·) >= ∫
U h(u)g(u)du is the scalar

product on H.

H is isomorphic to the space H generated by the ran-
dom variables Xu, u ∈ U. Furthermore, if (φi) is an
orthogonal family of H, for all family (ξi) of indepen-
dent random variables with law N (0, 1), the process X
defined by:

Xu(ω) =
∑
i∈I

ξi(ω)φi(u), ω ∈ �,

is a Gaussian process with covariance �.
A judicious choice of the base (φi) allows us to obtain

versions with interesting properties. Particularly, the
KL’s theorem [18] proposes using the family of �(u, .)

eigenfunctions as an orthonormal family of H. Indeed,
�(u, .) being positive definite, Mercer’s theorem on
positive definite kernels ensures existence and unique-
ness of this decomposition. The KL theorem says that,
if � is a continuous covariance on U × U, there exists
an orthonormal basis (φi) of H, constituted by eigen-
functions of �(u, .). The corresponding basis of H is the
family (ξi) of centered uncorrelated random variables.
In particular, we have the following representations:

1. ξi(ω) = ∫
U Xu(ω)φi(u) du.

2. Xu(ω) = ∑
i∈I ξi(ω)φi(u), ω ∈ �.

3. var(ξi) = λi, where λi is the eigenvalue associated
with φi.

4. If Xu is a Gaussian process, the (ξi) are independent
Gaussian random variables with variance λi.

Truncating the sum in 2 above, we can construct
approximations:

X(M)
u =

M∑
i=1

ξi(ω)φi(u) (2)

of the true process that minimize the integrated mean
squared error on U: ε2

M = ∫
U E(X(M)

u − Xu)
2 du, as can

be seen in [10]. Indeed, the λi being in decreasing
order, the first related terms will represent the major
part of the global variance. It is worth noticing that
the components (ξi) are independent if and only if
X is Gaussian. In the contrary case, although the (ξi)

are uncorrelated, they are not independent, and their
dependence links need to be studied carefully before
to use the KL expansion. In the following paragraph,
we examine the performances of this approximation in
terms of variance reproduction.

3.2 Approximation with respect to a statistical criterion

In this paragraph, we show the manner in which a trun-
cated KL expansion of a random field can reproduce
the major part of the variance of a nonapproximated
random field. We compute the eigendecomposition of
the three following classical geostatistical covariance
models, for (u, v) ∈ U:

1. The exponential model: �(u, v) = σ 2 e−3 ||u−v||
a

2. The normal model: �(u, v) = σ 2e−3 ||u−v||2
a2

3. The spherical model: �(u, v) = σ 2(1 − 3 ||u−v||
2a +

||u−v||3
2a3 )1{||u−v||<a}, where 1 is the indicator function.

As an example, Fig. 1 presents the rates of vari-
ance reproduction in function of the cumulative sum of
eigenvalues, for the three models, in two dimensions,
with a range a = H/4, where H is the size of the field
side. We change the discretization step from H/10 to
H/60 in order to assess its effect on the number of
components.

The first thing we can see in this figure is the im-
pact of the discretization step. Indeed, the number
of components needed to reproduce, say, 90% of the
total variance increases with the number of grid nodes.
However, the amplitude of this phenomenon depends
on the covariance model, and beyond a certain thinness
of the step, this number does not increase anymore.

If we look at the curves corresponding to a discretiza-
tion step of H/60, hence corresponding to a random
field discretized on 60 × 60 = 3,600 grid blocks, we
can see that the number of components necessary to
reproduce 90% of the global variance for the normal,
spherical, and exponential models is, respectively, 40,
300, and 1,000. This number of components is then
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Fig. 1 Cumulative sum of eigenvalues, 2-dimensional case,
range = H/4

related to the random field regularity defined by the
covariance model.

Moreover, the dimension of the problem of the field
also has an impact on the number of components to use.
Indeed, increasing the dimension of the random field
considered and, hence, of its covariance operator will
translate itself into an increased number of components
to reproduce a given rate of global variance.

We have shown here how a small number of compo-
nents can represent a large part of the global variance
of a random field. However, this criterion is somewhat
abstract with respect to our application domain. There-
fore, in the next section, we will examine dynamical re-
sults obtained by flow simulation on our approximated
random fields.

3.3 Conditioning to raw data

Often, we dispose of raw data on the field, e.g., at well
locations. We explain here briefly how to condition
a Gaussian random field X, given its value at two
points u and v. In this case, we consider the conditional
covariance matrix given by:

�c
M−2,M−2 = �M−2,M−2 − �M−2,2 �−1

2,2 �t
M−2,2,

where: �M−2,M−2 is the covariance matrix between

unconditioned part of the field,

�M−2,2 is the covariance matrix between the

two conditioning points and the rest of

the field,

�2,2is the covariance matrix between the two

conditioning points, −1,t are respectively the

inverse and transpose operator.

The conditional mean is given by:

μc = μ + �t
M−2,2 �−1

2,2 X(u,v),

where X(u,v)is the vector of conditioning data in

u and v.

We then have X|X(u,v) ∼ N (μc, �c). We then calcu-
late the eigenvalues and eigenvectors of �c.

3.4 Dynamical results

In this paragraph, we consider a 2-dimensional case test
with the following properties: the permeability field is
modeled by a log-normal random field, with a spherical
covariance structure of range 600 m, the mean and
variance the logarithm of the field are, respectively, 3.8
and 1; the field size is 2500 × 2500 m2 and is discretized
on a regular grid of 50 × 50 blocks; the thickness of
the field is 10 m; we put two wells on this field: an
injector at location (3, 3) and a producer at (48, 48);
the permeability field is conditioned with respect to a
permeability of 90 md at the well locations; the porosity
is assumed constant at 0.25. The field is assumed to be
saturated in oil at time 0. The flow is simulated with
3DSL [26] during 10,000 days with an injection rate at
5,000 m3/day and a pressure of 200 bars at the producer.

We performed a Monte-Carlo study, that is, we
generated 100 realizations of the permeability field X,
conditional to the permeability values at well locations,
considering each of them at different truncation orders
X(M). We then examined the error made on the water
cut (WC) by the approximations at different orders and
the true reference field. The water cut is the propor-
tion of water in the oil produced in function of time.
Hence, D∗ and F(X(M)) are both functions of time. The
error εWC is then calculated by the following formula:
εWC = ∑10000

t=0 (Ft(X) − Ft(X(M)))2. Figure 2 shows the
mean and maximum relative error on the water cut in
function of the number of components of the truncation
on a logarithmic scale. Furthermore, assuming an al-
lowable error of 2% on the water cut value, we compute
a boundary error as the dot line in red for the mean
(Fig. 2a). We also plot a boundary error of 5% for the
maximum as the dot line (Fig. 2b).

We can see in Fig. 2a that it suffices, on average, to
consider about 30 components to obtain an approxima-
tion error on the water cut values below the previously
defined confidence level. We also see that it is useless
to consider more than 50 components. Indeed, the
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a. b.

Fig. 2 Mean (a) and maximum (b) relative error on the water cut in function of the number of components

mean error stabilizes from 50 to 2,000 components, then
converges quickly toward zero. The maximum relative
error in Fig. 2b exhibits the same behavior. In this
example, fulfilling the dynamic criterion requires much
fewer components than that for reproducing 90% of the
variance. Indeed, if we turn back at Fig. 1, we can see
that 30 components corresponds to about 60% of the
global variance and that 50 components corresponds to
a bit less than 80% of it. We can then think that only this
portion of the variance and the associated eigenfunc-
tions suffices to determine the considered dynamical
behavior of the flow in a permeability field modeled by
such a Gaussian random field.

3.5 The eigenvalue problem

The main numerical problem induced by employing the
KL decomposition is the computation of the eigenval-
ues and eigenvectors of the covariance operator. For-
mally, it takes the form of an homogeneous Fredholm
integral equation of the second kind:
∫

U
�(u, v)e(u) du = λe(v) (3)

For certain classes of stochastic process, there exists an
analytical solution to Eq. 3, see [10] for some examples.
However, for the random fields used in petroleum en-
gineering, Eq. 3 needs to be solved numerically.

In a first step, Eq. 3 is discretized on the grid of
the field. This problem then turns out to be a linear
eigenvalue problem, whose dimension is the number of
grid nodes used in the discretization. Practically, it can
be in the order 105 to 107. This is a very challenging
problem. Although there exists numerical methods to

extract some of the eigenvalues for such high dimen-
sional problems, like [17] (of which there exists now a
parallel version), the following idea can be used as a
premise:

We consider a gaussian random field X with mean μ

and covariance �. We cut this field into two blocks XB1

and XB2 . We can then write � as follows:

� =
(

�B1 �B1,B2

�B2,B1 �B2

)
, μt = (μB1 , μB2)

t

We can simulate a realization of X in the following way:

1. simulate XB1 ∼N (μB1 , �B1) and get a realization
xB1 of XB1 ,

2. then simulate (XB2 |XB1 = xB1) ∼ N
(
μB2+

�t
B2,B1

�−1
B1

xB1 , �B2 − �B2,B1�
−1
B1

�B1,B2

)
.

This method can be easily generalized to n blocks
and can be then seen as a sequential block simulation.
There is still a numerical difficulty, as we need to com-
pute the inverse of the matrix �B1 , but it is of a rather
smaller dimension than the whole field.

We have shown in this section how the dimension
of the history matching inverse problem can be drasti-
cally reduced by the use of a truncated KL expansion
when the variable of interest is modeled by a second-
order random field. This method allows us to describe
approximately a discretized second-order random field
with a small number of components, while preserving
both spatial variability and model uncertainty space.
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Its assessment on a dynamical flow test shows that
only a few components govern the fluid flow behavior.
This method is then of great interest for solving the
history matching inversion problem. Its assessment on
a dynamical flow test shows that only a few of those
components govern the flow behavior.

However, different parameters can influence the
number of components such as the range, the regularity
of the covariance, and the dimension of the random
field. Hence, a preliminary study has to be performed
each time we want to use the decomposition, in or-
der to choose the number of components with respect
to a given criterion. Otherwise, this number can be
determined according to the available computational
resources.

Note also that a fundamental property of the KL
expansion for Gaussian random field is the indepen-
dence of its random components. Once the desired
eigenvalues and associated eigenfunctions are known,
it is straightforward to generate an approximate ran-
dom field that is of capital importance for applying the
MCMC algorithm.

4 MCMC for inverse problem

In this section, we first recall the main principles of
MCMC. Secondly, we illustrate the drawbacks of using
MCMC for inverse problems through a toy example.
We finally propose a strategy to surpass these draw-
backs, introducing the principles of parallel interacting
Markov Chains.

4.1 General principle

The MCMC method, introduced by Metropolis et al.
[19], is a popular method for generating samples from
virtually any distribution π defined on (X ,B(X )). In
particular, there is no need for the normalizing constant
to be known, and the space X ⊆ Rd (for some integer
d) on which it is defined can be high-dimensional. The
method consists in simulating an ergodic Markov chain
{Xn, n ≥ 0} on X with transition probability P such that
π is a stationary density for this chain, i.e., ∀A ∈ B(X ):

∫
X

P(x, A)π(x)dx = π(A) (4)

Such samples can be used, e.g., to compute integrals

π(g) =
∫
X

g(x)π(x)dx, (5)

estimating this quantity by

Sn(g) = 1

n

n∑
i=1

g(Xi), (6)

for some g : X → R. We illustrate the principles of
MCMC with the Metropolis–Hastings (MH) update. It
requires the choice of a proposal distribution q. The
role of q consists in proposing potential transitions for
the Markov chain. Given that the chain is currently at
x, a candidate y is accepted with probability α(x, y)

defined as:

α(x, y) =
{

min
(

1,
π(y)

π(x)

q(y,x)

q(x,y)

)
if π(x)q(x, y) > 0

1 else.
(7)

Otherwise, it is rejected and the Markov chain stays at
its current location x. The transition kernel P of this
Markov chain takes the form, for (x, A) ∈ X × B(X ):

P(x, A) =
∫

A
α(x, y)q(x, y)dy

+1A(x)

∫
X

(1 − α(x, y))q(x, y)dy, (8)

The Markov chain defined by P is reversible with
respect to π and therefore admits π as invariant dis-
tribution. Conditions on the proposal distribution q
that guarantee irreducibility and positive recurrence
are easy to meet, and many satisfactory choices are pos-
sible. However, we will see in the next paragraph that
the practice shows difficulty, particularly for nonlinear
inverse problems purposes, where the posterior can be
highly multimodal.

4.2 Performances of classical MCMC samplers
on a toy example

Three important pitfalls exists in the practice of
MCMC. First, MH algorithms, such as the symmetric
increments random-walk sampler, the sequential inde-
pendent sampler that is changing at each step a unique
component of the field, or the Langevin sampler, suf-
fer from slow mixing or even lack of convergence,
especially for a small number of iterations. The sec-
ond drawback of classical MCMC is the weak rate of
acceptation, when we compute the empirical estimate
of Eq. 7 and it generally worsens when the dimension
increases. Particularly in history matching, where one
iteration has a high computational cost, one wishes to
have a good acceptance rate when using MCMC. The
third drawback is the autocorrelations length along the
chain: as the realizations are drawn from a Markov
Chain, they are dependent from one another. The
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perspective view. view from the top.a. b.

Fig. 3 Posterior distribution (a, b)

variance of the quantities (Eq. 6) we want to estimate
are thus bigger than the empirical variance of the sam-
ple. In fact, the longer the autocorrelations are, the
bigger the variance will be.

We now describe some classical MCMC samplers
and set evidence on the drawbacks of using MCMC
methods in inverse problems on a toy example. Our
toy inverse problem is characterized by the following
function:

F : R2 �→ R

X = (X1, X2) → 2 X2
1 + X2

2 , (9)

given the following prior on X:

X ∼ N
(

0,

(
1 0.2

0.2 1

))
(10)

Given a particular realization of X, written X∗ =
(1.514, 1.335), we assume that we observe D∗ = F(X∗)
with an error ε ∼ N (0, 0.5). We plot the posterior den-
sity in Fig. 3a and b from two different viewpoints.
We can see its support envelopes the ellipse {X ∈
R2|F(X) = D}, and it presents two distinct modes.

perspective view. view from the top.a. b.

Fig. 4 KDE of the posterior constructed on an i.i.d. sample of size 10,000 (a, b)
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perspective view. view from the top.a. b.

Fig. 5 KDE of the posterior constructed on the states generated by the IMH algorithm (a, b)

To solve this problem, we try four different MH
samplers:

1. The independent sampler (IMH): q(x, y) = q(y),
where q is given by Eq. 10.

2. The symmetric increments random-walk sampler
(SIMH): q(x, y) = q(|y − x|), where q is the multi-
variate distribution N (0, hI), where I is the identity
matrix, and h = 0.1.

3. The Langevin sampler (LMH): assume that π is
differentiable on X , q takes the form:

q(x, y) ∼ N
(

x + h2

2
∇ log(π(x)), h2 Id

)
, (11)

where h is chosen 0.1.

4. The adaptive algorithm of [11] (ASIMH): In this
algorithm, y is proposed according to qθn(x, ·) =
N (x, �n), where θ = (μ, �). We also consider a
nondecreasing sequence of positive stepsizes {γn},
such that

∑∞
n=1 γn = ∞ and

∑∞
n=1 γ 1+δ

n < ∞ for
some δ > 0. In practice, we use: γn = 1/n, as sug-
gested in [11]. The parameter estimation algorithm
takes the following form:

μn+1 = μn + γn+1 (Xn+1 − μn) , n ≥ 0,

�n+1 = �n+γn+1
(
(Xn+1−μn) (Xn+1−μn)

T −�n
)
,

(12)

We can notice here that the chain generated by the
adaptive algorithm is no longer homogeneous, but it

perspective view. view from the top.a. b.

Fig. 6 KDE of the posterior constructed on the states generated by the SIMH algorithm (a, b)
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perspective view. view from the top.a. b.

Fig. 7 KDE of the posterior constructed on the states generated by the LMH algorithm (a, b)

can be proved (see [11] and [3] and [2] in a more
general framework) that it has the correct ergodic prop-
erties. The idea of adaptive sampling is to improve the
proposal efficiency, making it as close as possible to
the posterior density. Practically, the parameters of the
proposal are not updated at each iteration. We ran this
algorithm with a first update of the parameters after 50
iterations and then an update every 10 iterations.

We ran all four algorithms for 10,000 iterations,
which already represent an important number of iter-
ations for history matching applications. We compare
the results given by those four algorithms for the in-

verse problem defined above. To do this, we introduce
three different criteria:

1. The kernel density estimate (KDE) of the posterior
in Figs. 5, 6, 7, and 8, to be compared to Fig. 4.
The latter represents the KDE of the posterior
constructed from an i.i.d. sample of size 10,000 of
the true posterior. In the whole paper, we consider
the bandwidth of the KDE to be chosen according
to the sample size.

2. The empirical acceptance rate in Fig. 9.

perspective view. view from the top.a. b.

Fig. 8 KDE of the posterior constructed on the states generated by the ASIMH algorithm (a, b)



112 Comput Geosci (2009) 13:103–122

3. The mean autocorrelations along the chain in
Fig. 10.

In Figs. 5, 6, 7, and 8, we can see the KDE computed
from the states generated by all four chains. It is of
great interest to remark that the SIMH and the LMH
only perform a local sampling of the posterior (Figs. 6
and 7), missing one of the two modes of the posterior.
Indeed, their KDE do not exhibit the two modes of the
posterior. Only the spannings performed by the IMH
and the ASIMH are correct as they charge the entire
ellipse. Particularly, the KDE constructed from the
IMH sample is correct (Fig. 5). The one corresponding
to the ASIMH sample, in Fig. 8, is really poor. This is
probably due to the fact that we considered the entire
sample. Indeed, it is possible that, as the first updates of
the parameters occur, the algorithm has only spanned a
small portion of the space and then it makes artefacts
appear due to the use of bad parameters. Indeed, the
parameter estimates are really slow to converge, and it
conducts to poor sampling in the beginning of the algo-
rithm. This behavior makes this algorithm improper for
our application domain.

Furthermore, the ASIMH and the IMH exhibit the
poorest final empirical acceptance rates (Fig. 9), around
0.1, meaning that only 10% of the moves are ac-
cepted for this relatively simple problem. Conversely,
the SIMH and IMH show good performances regarding
this criterion, especially the LMH, with a final empiri-
cal acceptance rate greater than 0.95. However, those
two chains show poor performances with respect to
autocorrelation length (defined as the first time beyond
which the autocorrelation is less than 0.05, the dot line

Fig. 9 Empirical acceptance rates along the chain for all four
algorithms, logarithmic scale

Fig. 10 Autocorrelations along the chain for all four algorithms,
logarithmic scale

in Fig. 10), as they exhibit the longest autocorrelation
length, unlike IMH and ASIMH.

By looking at these figures, the practitioner has
to choose between good mixing properties with short
autocorrelation but really poor acceptance rates and
bad mixing with long autocorrelation and good accep-
tance rates. Furthermore, the effect of an increasing
dimension is not addressed here, but it is known to
worsen the properties of the chain. Especially, the IMH
algorithm is known to fail in high dimension, although it
performed relatively well here. In order to improve the
mixing properties of the chains without increasing the
computational cost of the algorithm, we now introduce
the principle of parallel interacting Markov Chains.

4.3 Parallel Interacting Markov Chains

The principle of making interacting Markov Chains
first appeared in [9] under the name parallel tempering
(PT). It has been mostly applied in physicochemical
simulations; see [7] and references therein. It is known
in the literature under different names, such as ex-
change Monte Carlo and metropolis coupled-chain; see
[14] for a review. The principle of PT is to simulate a
number (K + 1) of replicas of the system of interest by
MCMC, each at a different temperature, in the sense of
the simulated annealing, and to allow the chains to ex-
change information, swapping their current state. The
high-temperature systems are generally able to sample
large volumes of state space, whereas low-temperature
systems, while having precise sampling in a local region
of state space, may become trapped in local energy
minima during the timescale of a typical computer
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simulation. PT achieves good sampling by allowing the
systems at different temperatures to exchange their
state. Thus, the inclusion of higher-temperature sys-
tems ensures that the lower-temperature systems can
access a representative set of low-temperature regions
of state space.

Simulation of (K + 1) replicas, rather than one, re-
quires on the order of (K + 1) times more computa-
tional effort. This extra expense of PT is one of the
reasons for the initially slow adoption of the method.
Eventually, it became clear that a PT simulation is
more than (K + 1) times more efficient than a stan-
dard, single-temperature Monte Carlo simulation. This
increased efficiency derives from allowing the lower-
temperature systems to sample regions of state space
that they would not have been able to access, even
if regular sampling had been conducted for a single-
temperature simulation that was (K + 1) times as long.
It is also worth noticing that PT can make efficient use
of large CPU clusters, where different replicas can be
run in parallel, unlike classical MCMC sampling that
are sequential methods. An additional benefit of the
PT method is the generation of results for a range
of temperatures, which may also be of interest to the
investigator. It is now widely appreciated that PT is a
useful and powerful computational method.

More recently, some researchers in the statistical
community gave attention to PT and, more generally,
to interacting Markov Chains. They propose a general
theoretical framework and new algorithms in order
to improve the exchange information step addressed
above. Two main algorithms drawn our attention: the
equi-energy sampler (EES) of [16] and the population
importance-resampling MCMC sampler (PIR) of [1],
which allows us to go back in the history of the chain.
More precisely, these last two algorithms are based on
self-interacting approximations of nonlinear Markov
kernels, defined by Andrieu et al. [1]. We now describe
these methods in our context.

4.3.1 Description of the algorithms

We first define the family {π(l), l = 0..K} of distribu-
tions we want to simulate from, such that:

π(l)(x) ∝ e−El(x), (13)

where El(x) = E(x)

Tl
and E(x) = 1

2‖D∗ − F(x)‖2
C−1

D
+

1
2‖x − μ‖2

�−1 is the energy of the system and Tl is
the temperature at which it is considered. The Tl

satisfy: T0 = 1 < T1 < . . . < TK < +∞, so that π(0) =
P(X|D∗). These distributions are a family of tempered
versions of P(X|D∗). We will also talk of tempered

energies to denote the El. The parallel algorithms aim
to simulate from:

�(x) =
K∏

l=0

π(l)(x), (14)

allowing exchanges between states at different tem-
peratures. Dilatate versions of π(0): π(1), . . . , π(K) are
easier to simulate. Thus, they can provide information
on π(0).

Different strategies can be adopted to exchange in-
formation between chains at adjacent temperatures.
We denote by x = (x(0), . . . , x(K)) ∈ X K+1 the current
state of the chain. For l = 0, . . . , K − 1, we define the
importance function:

r(l)(x) = e−(El(x)−El+1(x)) (15)

The method can be formalized by defining the fol-
lowing kernel Pn at time n, given all the previous
states x0:n−1 = (x0, . . . , xn−1) and for A0 × . . . × AK ∈
B(X K+1):

Pn (x0:n−1; A0 × . . . × AK)

= P(K)(x(K), AK)

K−1∏
l=0

P(l)
x(l+1)

0:n−1

(x(l), Al), (16)

where, for x(l+1)
0:n−1 ∈ X n, x(l) ∈ X and A ∈ B(X ):

P(l)
x(l+1)

0:n−1

(x(l); A) = θ P(l)(x(l), A)

+(1 − θ)

∫
X

ν
(l)
x(l+1)

0:n−1

(x(l), dy)

×T(l)(y, x(l); A), (17)

and

ν
(l)
x(l+1)

0:n−1

(x(l), dy)

=
∑n−1

i=0 ω
(l)
n,i(x(l), x(l+1)

i )δx(l+1)
i

(dy)∑n−1
i=0 ω

(l)
n,i(x(l), x(l+1)

i )
(18)

and in the algorithms considered here, T(l) will take the
following form:

T(l)(y, x(l); A) = min

(
1,

r(l)(y)

r(l)(x(l))

)
1A(y)

+
(

1 − min

(
1,

r(l)(y)

r(l)(x(l))

))

×1A(x(l)) (19)

In other words, at time step n, at temperature Tl, with
probability θ , a classical MH move will be performed.
Otherwise, with probability (1-θ), an exchange move
will be proposed. It consists in choosing a state y among
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x(l+1)
0:n−1 with the weights ω

(l)
n,i(x(l), x(l+1)

i ). This move is

then accepted with probability min
(

1,
r(l)(y)

r(l)(x(l))

)
. The new

state is chosen according to ν
(l)
x(l+1)

0:n−1

, that can be viewed

as an importance sampling estimate of π(l) with the
instrumental law π(l+1).

The three algorithms (PT, EES, and PIR) considered
in this article can be written in this framework, and they
differ only from the formulation of the weights ω

(l)
n,i, for

some (y, z) ∈ X 2:

– For the PT algorithm, we have:

ω
(l)
n,i(y, z) = 1i=n−1,

it is only possible to go to the current state of the
chain at the adjacent higher temperature.

– For the EES algorithm, given a sequence of energy
levels E0 < E1 < . . . < EK < EK+1 = ∞ defining a
partition: X = ⋃K

l=0 Xl of energy rings: Xl = {x ∈
X : El < E(x) < El+1}, and the function I(x) = l if
x ∈ Xl the ωn,i take the form:

ω
(l)
n,i(y, z) = 1XI(y)

(z),

that is, the new state will be taken uniformly among
the states x(l+1)

0:n−1 of the chain at temperature Tl+1

that are in the same energy ring as the current state.
– For the PIR algorithm, the weights ωn,i take the

following form:

ω
(l)
n,i(y, z) = r(l)(z),

that is, we obtain the new state by resampling from
x(l+1)

0:n−1 with the weights ω.

The main idea behind the two last algorithms is that
the kernel defined in Eq. 17 will converge towards the
following limiting kernel:

P(l)
x(l+1)

0:n−1

(x(l); A) = θ P(l)(x(l), A) + (1 − θ)R(l)(x(l), A),

(20)

where R(l) is a MH kernel, whose proposal distribution
is given by:

– Q(l)
PI R(x, dy) = π(l)(dy) for the PIR algorithm

– Q(l)
EES(x, dy) ∝ π(l+1)(y)1XI(x)

(y)λ(dy) for the EES

Obviously, the convergence towards R(l) will not be
achieved in the time of the simulation, but its approxi-
mation at time n will help to sample from the posterior,
particularly to span a larger part of the state space.

Fig. 11 Autocorrelations along the chain for the PT algorithm,
logarithmic scale

Finally, it is worth noticing that, for all three al-
gorithms, we can use the samples of all the chains,
reweighting them by the following importance weights:

η(l)(x) = e−(E0(x)−El(x)), (21)

in order to compute estimates of Ig = Eπ0

[
g(X)

]
, for

some g. Hence, the estimate Îg, after N iterations of
the algorithm, will take the form:

Îg =
K∑

l=0

∑N
i=0 η(l)(x(l)

i )g(x(l)
i )∑N

i=0 η(l)(x(l)
i )

. (22)

Fig. 12 Autocorrelations along the chain for the EES, logarith-
mic scale



Comput Geosci (2009) 13:103–122 115

Fig. 13 Autocorrelations along the chain for the PIR algorithm,
logarithmic scale

It has been shown numerically in [16] that using the
reweighted entire sample will provide better estimates
than using only x(0)

0:N .
Concerning the choice of the parameters, some

heuristic rules exist and are discussed in, e.g., [14] for
the PT algorithm and in [16] for the EES. However,
the choice depends mainly on the problem addressed
and there is no general recipe to tune the parameters.
We will explain how we choose them for the history
matching application in Section 5.2. We now describe
some numerical results for these three algorithms.

4.3.2 Numerical results

We compare the results given by these three algorithms
on the problem defined in Section 4.2. We consider four
different temperatures (T3 = 50, T2 = 13.5722, T1 =
3.6841, T0 = 1) and we set the probability of exchange
θ at 0.2. At each temperature, we use a SIMH sampler
with a variance varying according to the temperature,
namely 0.1 at T0 and 0.1

√
Tl at Tl, 0 < l ≤ 3.

We now compare the results given by those three al-
gorithms for the inverse problem defined in Section 4.2.
We do not reproduce here each of three different crite-
ria we used previously. Indeed, in terms of empirical
acceptance rate, for each chain, our three algorithms
behave like the SIMH. We recall the two criteria, de-
fined in Section 4.2, that we use there:

1. The mean autocorrelations for each parallel chain
along the chain in Figs. 11, 12, and 13.

2. The KDE of the posterior in Figs. 14, 15, and
16 to be compared to Fig. 4 . Again, we used a
bandwidth chosen according to the sample size. We
constructed these estimates considering the whole
sample, that is, including the states of all four
chains, weighting them by the weights (Eq. 21).

When we look at Figs. 11, 12, and 13, we can see that
these methods provide the major advantage of reducing
autocorrelations along the chain with respect to single
MCMC. For each of three algorithms, we represent
the autocorrelations along each of four chains. We can
see that the autocorrelations along the chain at T0 are

perspective view. view from the top.a. b.

Fig. 14 KDE of the posterior constructed on the states generated by the PT algorithm (a, b)
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perspective view. view from the top.a. b.

Fig. 15 KDE of the posterior constructed on the states generated by the EES (a, b)

systematically reduced with respect to the classical
SIMH algorithm (see Fig. 10), although the proposal
variance has been chosen equally to be 0.1. This phe-
nomenon is due to the exchange steps that allow re-
generations of the chains. In other words, each piece
of chain between two exchange steps is independent
from one another, which induces the reduction of the
autocorrelations.

In Figs. 14, 15, and 16, we represent the resulting
KDE for all three algorithms. We can see the ability
of these methods to efficiently sample multimodal dis-
tribution: the density estimates clearly exhibit the two
modes of the posterior distribution.

Finally, we have shown in this toy example the
advantage of using interacting Markov Chains: they
improve the browsing of the support of the distribution
while reducing the autocorrelations, comparatively to
classical single MCMC sampling. These performances
are realized without increasing the computational cost,
as these algorithms are easily parallelizable. In fact, at a
fixed iteration number, the parallel algorithms are even
faster, as an exchange step counts for one iteration,
without computing the forward operator. These meth-
ods are then particularly suited for solving inverse prob-
lems where no analytical expression for the forward
operator exists, like the history matching problem.

perspective view. view from the top.a. b.

Fig. 16 KDE of the posterior constructed on the states generated by the PIR algorithm (a, b)
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More precisely, the PIR and the EES algorithms are
more powerful than the PT, as they allow exchanges
with the past of the chains, accounting for all the
information learned until the iteration n. In the next
section, we apply the PIR algorithm to a reservoir
characterization synthetic problem.

5 Application to history matching

In this section, we describe the results given by the
PIR algorithm on a synthetic reservoir characterization
problem. Indeed, we think it is the most suitable al-
gorithm for our problem. Considering that the lower
the temperature is, the slower will the chain enter the
stationary regime; we can remark that the PIR does
not need the chains to be in stationary regime before
allowing exchanges, contrary to the EES algorithm.
Indeed, in the EES, the exchange proposal is made in
the same energy ring as the current state. Then, if the
chain of interest has not reached the stationary regime
and is still at high energy levels, the exchange proposal
will be in the same energy ring as the current state.
Therefore, it will not help to attain stationary regime.
Conversely, the PIR proposes exchange proposals ac-
cording to an importance sampling step, constructed on
the states generated at the higher adjacent temperature.
The proposals are then more likely at low energy levels.
Therefore, we choose to apply here the PIR algorithm,
described in Section 4.3.1.

5.1 Description of the case

The prior geostatistical model of the field for this prob-
lem and the parameters of the fluid-flow simulator are
the same as in 3.4. Given a reference realization of the
field X, computed with all its 2,498 components, and
its water cut calculated on 3,000 days, we attempt to
condition the geostatistical model X to the water cut
D∗. In other words, we try to produce an i.i.d sample
of Eq. 1 as explained in Section 2. However, we use a
truncated KL expansion (Eq. 2) with M = 50 compo-
nents to represent the field. Hence, the dimension of
the inference problem is reduced. The formulation of
the posterior is then the following:

P(X(M)|D∗) ∝ e

(
− 1

2 ‖D∗−F(X(M))‖2− 1
2 ‖X(M)−μ‖2

�
−1
(M)

)

, (23)

where �(M) = �(M)��t
(M),

�(M) is the matrixL × M whose column vectors

are the φi(x),

� is the diagonal M × M whose diagonal

components are the λi.

Here, we consider the production data water cut. We
recall here that the water cut is the proportion of water
in the oil produced, in function of time. Hence, D∗ and
F(X(M)) are both functions of time. The covariance of
the measurement error on the water cut is assumed to
be I, where I is the identity matrix. The exponent of the
likelihood term in Eq. 23 is written:

‖D∗ − F(X(M))‖2 =
t=3000∑

t=0

(
D∗

t − Ft(X(M))
)2

5.2 Methodology

In order to sample from Eq. 23, we implement the
PIR algorithm. In this section, inspired by practical
considerations found in [14] and [16] and our own
experience, we explain how we choose the different
parameters of the algorithm. Particularly, we will focus
on the following four points:

1. The highest temperature to choose
2. The kernel to choose as a function of the tempera-

ture
3. The number of chains
4. The probability of proposing information exchange

between chains

We first launch 200 preliminary runs in order to choose
the maximum temperature we will use. We represent
the histogram of energies in Fig. 17. In Fig. 18, we also
show the corresponding curves of water cut together

Fig. 17 Histogram of energies of 200 random realizations
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Fig. 18 Water cut curves of the sample

with the black thick curve representing the reference
water cut. Moreover, we represent in this figure the
0-to-3,000-day period to be matched as well as the
3,000-to-5,000-day period. This last part of the curve is
computed to assess the prediction ability of the sample.
We can see in this figure that all the curves are far away
from the reference water cut and are really poor for
prediction purposes.

We can see in Fig. 17 that the energy is mainly dis-
tributed between 0 and 5,000, with an average of about
3,000 (the minimum energy of the sample being about
800). As proposed in [14], we choose first a maximal
temperature. We consider the energy term in Eq. 23:

E(X) = 1

2
‖D∗ − F(X(M))‖2 + 1

2
‖X(M) − μ‖2

�−1
(M)

. (24)

The mean of the second term of Eq. 24 is:

E

(
1

2
‖X(M) − μ‖2

�−1
(M)

)
= E

(
1

2

M∑
i=1

ξ 2
i

)
= M

2
,

when the ξi, defined in Section 3.1, are considered i.i.d
centered reduced Gaussian. Formally, the posterior dis-
tribution of the ξi is not Gaussian, as F is not linear.
Nevertheless, we only try here to evaluate an order
of magnitude of the mean energy of the posterior, in
order to construct the temperature ladder. At the same
time, the first term of Eq. 24 has to be near zero for
a realization of Eq. 23. We deduce that the mean of
Eq. 24 for the conditioned realizations will be about
M/2, that is 25 here. As the average energy of the 200
Monte Carlo samples has been found to be 5,000, we
choose the highest temperature to be 100 to ensure a

sufficient transition acceptation rate for the chain at the
highest temperature.

As already claimed, the idea of these methods is
to improve the mixing of the chain. Then, according
to the temperature, we have to choose kernels that
will make this assumption effective. At the highest
temperature, larger moves tend to be accepted, even
though the energy level reached is not as low as the
one finally aimed at. Thus, it is of great interest to
use a fast mixing kernel that cannot be used at lower
energy levels. For this application, a first run using a
SIMH with very large moves at highest temperature, as
proposed in [16], led to very poor results, generating
only extreme values with very high energy levels at the
highest temperatures. Thus, the exchange propositions
were systematically rejected. We then chose an inde-
pendent sampler at this temperature.

Conversely, at low temperatures, it is of interest to
employ a kernel with good local properties like the
Langevin sampler or a SIMH with small steps. This kind
of kernel will perform a good local exploration of the
posterior. The point is then to choose the intermediate
kernels, between the highest and the lowest tempera-
ture levels. Increasing the step of a SIMH sampler ac-
cording to the temperature, as proposed in [16], seemed
to be a good idea. However, as said previously, it failed.
The difficulty is then to choose kernels that progres-
sively worsen their mixing properties, while increasing
local properties, when descending the temperature lad-
der. In a high dimensional setting like ours, one can
change the number of components that are affected at
each iteration. For example, we can choose a kernel
that modifies all components at each iteration at the
highest temperature and a kernel that modifies only one
at the lowest.

Furthermore, these considerations about kernels are
closely related to the number of chains to use. Partic-
ularly, it is important not to employ too many chains.
Indeed, using too many chains will slow the input of
information from the highest temperature levels to the
lowest. Conversely, the number of chains has to be
large enough to allow them to exchange information at
a good rate: the histograms of the tempered energies of
two chains at adjacent temperatures need to possess a
sufficient overlapping interval to allow exchanges.

Here, after some numerical experiments, we chose
to use five different temperatures. We construct the
temperature ladder distributing geometrically the tem-
peratures between T0 = 1 and T4 = 100. The choice
of a geometric distribution of the temperatures is a
classical one in the PT literature; see, e.g., [7]. If the
number of chains is sufficient, it generally allows a good
overlapping of the histograms of the tempered energies.
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Namely, we take Tl = T0

(
T4
T0

)l/4
for l = 1, 2, 3. Hence,

we use the following temperature ladder:

T0 = 1.000 < T1 = 3.162 < T2 = 10.000 < T3 = 31.623

< T4 = 100.000

Thus, we simulate five Markov chains (X(l)) at the
temperature T(l). At T0, T1, and T2, we simulate from a
SIMH algorithm with a step variance 0.1

√
Tl, affecting,

respectively, one, two, and five components. At T3,
we simulate from an independent sampler affecting 10
components. At T4, we simulate from a global inde-
pendent sampler. In other words, proportional to the
temperature, we propose larger moves, using global
samplers at the two highest temperatures. Simulating
modifying fewer components at low temperature al-
lows us to have better acceptance rates in our high
dimensional space (M = 50) and to allow local explo-
ration of the posterior. Moreover, the moves at the
highest temperatures affect more components to im-
prove the mixing of these chains, feeding the chains
(X(0)), (X(1)), (X(2)) with states that they could not
have attained without the exchange steps.

Regarding the proposal rate of information ex-
change, there is again a balance to achieve between
high and low rates. A high rate will encourage in-
formation exchange, but will slow local exploration.
Conversely, a low rate will hamper the process of ex-
changing information.

After a few experiments, we allowed the chains to
exchange information according to the PIR scheme

Fig. 19 Energy of the states of the five chains, generated by the
PIR along the 10,000 iterations

Fig. 20 Water cut curves of the sample and reference

just after the first iteration with a probability of 0.1.
We ran this algorithm for 10,000 iterations, and we
now describe its numerical results. The algorithm took
2 days to run on a desktop computer with a single
processor AMD Opteron 146 2.0 GHz.

5.3 Numerical results

We first show in Fig. 19 the energy of the states gen-
erated by the five chains used in the PIR for 10,000
iterations.

Figure 19 shows the energy of the states of the five
chains in function of the number of the iteration. Look-
ing at the lower curve, corresponding to T0, we can
see that it stabilizes after about 500 iterations, around

Fig. 21 Median, 95% percentile confidence interval, and refer-
ence water cut
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levels of energy corresponding to the expected order of
magnitude of the mean energy of the posterior. Indeed,
allowing exchanges since the beginning helps to con-
verge quickly. As all the other chains show a stabilized
profile of energy after this number of iterations, we
consider it as the end of the burn-in period, that is, we
consider that each chain is in stationary regime beyond
this number of iterations. Moreover, we can see that
each couple of chains at adjacent temperatures show
overlapping energy profiles, allowing the exchanges
between the two chains. Indeed, the empirical exchange
acceptance rate has been found between 0.6 and 0.8 for
each couple of adjacent chains.

We present in Fig. 20 the water cut curves corre-
sponding to the states generated by the chain at T0 after

the 500th iteration. We plot the curves corresponding
to this chain only because the weights (Eq. 21) of the
states generated by the other chains are negligible in
this application. We also represent the reference water
cut as the thick line in black on this figure. In Fig. 21, the
reference water cut in black, the median of the sample
in red, and the 95% percentile interval as red dotted
lines are represented. We use the median as estimator
of the expectation, as it is more robust than the empiri-
cal mean, particularly to eventual extreme values.

We can see in Fig. 20 that the curves generated
by our algorithm are well distributed around the ref-
erence one. In other words, the water cut data, up
to 3,000 days, is correctly matched for the sample.
Particularly, the breakthrough time, that is the time
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Fig. 22 Reference permeability field (a) and eight realizations from the posterior generated by the PIR algorithm (b–i)
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when the water cut become greater than 0, is perfectly
matched by the whole sample. Between 3,000 and 5,000,
the curves are more widely spread around the refer-
ence, exploring the different possible prolongations of
the curve. Comparing these results with Fig. 18 enlight-
ens the quality of our results. In Fig. 21, we can also
see that, for the period matched (up to 3,000 days),
the median of the sample produced perfectly matched
the reference. Moreover, the 95% confidence interval
is extremely thin around the reference water cut until
3,000 days, when it widens according to the sample
generated. We can see that, for the next 2,000 days, the
reference water cut stays in the 95% confidence interval
and is quite close to the median, validating our sample
for prediction purposes. We can also remark that the
confidence interval tends to shrink at the end of the
period considered. This effect is due to the intrinsic
nature of the water cut on this example. Indeed, it is
a strictly increasing function with an asymptote at 100.
This explains why the curves of the sample generated
are getting closer at the end of the time period. Finally,
we represent, in Fig. 22, the reference permeability
field computed with all the components and a collection
of eight realizations of the permeability field condi-
tioned to the water cut data D∗, generated by the PIR
algorithm.

We can first see in Fig. 22 that the aspect of the
realizations (b, ..., i) generated by our algorithm is far
smoother than the reference. This is due to the approx-
imation made by using a truncated KL expansion with
M = 50 components. It has been seen in Section 3.4
that such an approximation is able to reproduce the
dynamical properties of the field. It is then possible to
add the remaining components of the KL expansion to
each realization, simulating the remaining (ξi), to obtain
a permeability map that will have the same aspect as the
reference one.

It can also be seen that the realizations we represent
here are clearly different between each other. This il-
lustrates the good exploration of the posterior (Eq. 23)
carried out by the PIR algorithm, by improving the mix-
ing properties with respect to classical single MCMC.
A single Markov chain could not have produced such
various maps within the same number of iterations; see,
e.g., [6]. This ability is of great interest when address-
ing the problem of prediction uncertainties. Indeed,
different permeability maps will lead to different pre-
diction curves. Identifying numerous different perme-
ability maps that are potential representations of the
true permeability field will lead to better uncertainty
assessment. That is illustrated here with the water cut
curve prediction with its associated confidence interval
in Fig. 21.

6 Conclusions

In this work, we have first described a way to reduce the
dimension of the inverse problem in history matching
by using a truncated KL expansion of the random field
of interest. We have validated the method by a Monte
Carlo study. Then, we have shown the deficiencies of
classical MCMC methods when applied to multimodal
ill-posed inverse problems. We have then proposed
an innovative application of recent stochastic simula-
tion methods, based on parallel interacting Markov
Chains. Numerical results on a toy example have shown
its interest in the resolution of inverse problems in
the Bayesian framework. Finally, an application on a
synthetic case of reservoir characterization has been
performed, and its results are clearly satisfactory. Es-
pecially, the results have demonstrated the improved
properties of the PIR algorithm in the sampling of
the posterior. Moreover, we have produced with this
algorithm a sample with good predictive properties.
Finally, we want to recall here that our method has the
same computational cost as classical MCMC methods.

Improvements can be made on the parameterization
of the parallel algorithm. For instance, it could be really
interesting to use a Langevin sampler at the lowest
temperature, as this kernel is known to exhibit the
best local performances among the different samplers.
However, it requires computing the gradient of the
fluid-flow simulator. This could be done by the use
of a simulator with adjoint states or numerically. The
dimension still being 50 in the case studied here, a
numerical estimate of the gradient in each direction is
intractable: it would require 50 additional simulations
at each iteration to compute the local gradient estimate
in single precision. Nevertheless, choosing the most
important directions in which to compute the gradient
should be of great interest. A preliminary sensitivity
analysis could indeed be performed before running the
algorithm in order to evaluate the influence of the
components of the KL expansion for the considered
response of the fluid-flow simulator. Then, a local nu-
merical estimate of the gradient could be computed in
the directions chosen. This task is also easily paralleliz-
able. With this estimation, the Langevin sampler could
be implemented without increasing the computational
cost. Theoretically, it would make the local exploration
of the posterior more accurate.

When new data are available, we have to integrate
them. This problem of integrating new data could be
easily addressed in the following way: we could use
either the same method using the kernel given by the
final estimation of Eq. 20 or an importance sampling
resampling scheme [23] proposing a realization with
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the weights given by Eq. 21, then reweighting them
according to the new results.

It would also be of great interest to investigate the
case of Gaussian based lithofacies geostatistical models,
like truncated Gaussian model or pluri-Gaussian
model. As Gaussian related, a KL expansion could be
performed on these models in order to reduce their di-
mensionality. Then, the sampling techniques addressed
here could be used to perform the history matching.
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