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ABSTRACT 

When a mineral deposit is made of geological bodies such as breccias or lenses that concentrate 

high grades, and when production blocks contain few such bodies, estimating block grades by 

ordinary kriging may produce unrealistic spatial continuity. To improve the block model, a usual 

practice consists in (1) estimating spatial proportions of facies (unit), (2) estimating the grades, 

facies by facies, and (3) combining the results to obtain the block grades. We show that this 

practice assumes some links between the geological bodies, which will be verified. Then, we try to 

answer this general question: Given a set of samples where facies and grades are known, what is 

the best way to build a block model? We propose a methodological work flow which leads to a 

cokriging system where facies indicators are used, together with their product with the grade, a 

method that does not require the previous calculation of the facies proportions, at the scale of the 

blocks, but is implicitly based on them, at the point-support scale.  The method is applied to a 

porphyry copper deposit located in northern Chile. When compared to a usual kriging without any 

facies consideration, the improvement of the method is slight because the grade follows the contact 

hierarchy between facies and also an important part of the spatial variability is purely random. 

When compared to the traditional approach we notice very poor correlation and this makes 

perhaps questionable some choices made by the geologists. 
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INTRODUCTION 

In this paper, we try to answer this question: given samples where facies (i.e., a categorical 

variable) and grade are known, what is the best way to build the block model (i.e., to estimate the 

average grade at the scale of production block). We show that, contrary to usual practice, it is not 

necessary to separate facies proportion estimation from grade one and that the useful variable to 

solve this problem is the grade multiplied by the facies indicator. Then, following an application on 

a porphyry copper deposit, we show, step by step, how we can characterize the geometry of the 

facies and we build a cokriging system using indicators and grade. The block model is compared to 

usual kriging, and to the block model used in the company. 

Basic functions used in the following are indicator functions. The probabilistic interpretation of 

cross, direct, and ratio of indicator variograms is helped by the presentation of Rivoirard [1]. A 

general overview of all this material is contained in the textbook by Chilès and Delfiner [2]. 

FORMALIZATION 

We consider a block named V within which the ore is classified into n subsets vi associated with 

facies (units). V and vi denote the objects and their volumes. We consider that the rock density ρ is 

constant over V and does not depend on i but it can vary slowly in space. We are interested by 

Z(V) the average grade of metal over V 

              
V

1 Q(V) metal tonnage
Z(V)= Z(x)dx

V T(V) ore tonnage
           (1) 

The problem is: Given the point-support samples, what is the best way to estimate Z(V)? 

TRADITIONAL APPROACH 

We set 

n n

i i

i

i=1 i=1i

Q( )
Z(V)= p Z( )

V ρ
i

v v
v

v
 

Q(vi), quantity of metal contained in vi 

pi , (volumetric) proportion of unit i in V 

                          Z(vi), metal grade of subset vi                         (2) 

A usual practice is 

(1) To estimate each pi and Z(vi) separately 

(2) To estimate pi by interpolating local proportions or by indicator kriging or by “hand 

drawing” 

(3) To estimate Z(vi) by kriging, at the scale of V, using the sole samples labeled i 
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(4) To combine the estimations to obtain the result 

We remark that the optimal estimation of a sum of variables is not necessary equal to the sum of 

optimal estimators, and the same for a product. Questions: 

 If the proportions pi (resp. the grades  Z(vi)) are spatially correlated, could it be useful to 

use cokriging? 

 Is it possible to avoid the proportions estimation during the block estimation procedure? 

 Why separating pi from Z(vi) and not estimating directly the product?  

 What is this product? 

SIMPLIFICATIONS 

We set 

 
n n

i
i

i=1 i=1

Q (V)
Z(V)= Z (V)

V
                        (3)  

We consider that we have as many type of metal as facies. Qi(V) represents the quantity of metal i 

contained in V and Zi(V) the grade of metal i.   

The point-support grade Zi(x) is defined by 

 
i iZ (x)=1 (x)Z(x)                         (4)   

with  

            
i1 (x)=1 if x facies i, 0 if x  facies i              (5)  

and we have finally 

           i i i i

V V

1 1
Z (V)= Z (x)dx 1 (x)Z(x)dx p Z( )

V V
iv               (6)   

We are in an isotopic situation (the variables are equally sampled) and the cokriging of the sum 

equals the sum of cokrigings 

 
n

CKCK

i

i=1

Z(V) Z (V)                          (7) 

For each grade Zi, we estimate by cokriging its average over V and we add the estimations.  

We have 2n variables to consider for building the cokriging system 

 n facies indicators 1i(x) (introduced for their major influence), 

 n grades Zi(x) (variables of interest). 

Depending on the link between these variables, we search if it is necessary or not to split the metal 

according to the units and if we can regroup some facies. 
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TOOLS 

Indicators define spatial domains so one can say that they set the “geometry” of the problem. For 

the modelling, it seems natural to start with the indicators then continue with the grades and the 

way they interact with the indicators. The tool is the variogram interpreted in a probabilistic way 

(Table 1).  

Table 1 Indicator variograms (denoted by Greek letter ) and their probabilistic interpretation 

Calculation Interpretation Conceptual illustration 

i  (h)  p(x i , x+h i)  

Probability, for a pair of points separated by h, to 

overlap 2 facies, one being i  

ij  (h)  p(x i , x+h j)  

Probability, for a pair of points separated by h, to 

overlap facies i and j  

ij

i

 (h)

 (h)
 

p(x+h j/x i, x+h i)  

Probability to reach j while leaving i 
 

iiZ

i

 (h)

 (h)
 

E[Z(x+h)/x+h i, x i]  

Average grade when entering in i 
 

EXPERIMENTATIONS 

We study a domain of approximately 400x1500x400 m
3
 which contains more than 54000 samples 

of 1.5 meter length, all informed in copper grade and coded in 4 facies (units) (Table 2). Breccias 

are mainly located in the centre of the domain and waste to the west. The eastern limit is given by a 

fault.  

Table 2 Main characteristics of the grades 

 Abr. Colour Proportion 

% 

Mean grade 

% 

Std dev. 

All facies   100 0.78 1.54 

Waste W  31.2 0.06 0.17 

Low grade C1  27.5 0.31 0.36 

High Grade C5  31.7 1.16 0.90 

Breccias Bx  9.6 4.27 3.48 

General statistics 
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Average grades present important differences between facies (Table 3). Even poor facies present 

high grades like 8% of copper for waste for example. These are probably isolated breccias coded as 

waste (W) because they are not accessible in exploitation. 

Table 3 Basic statistics of the grades 

Type Nb. 

samples 

Min 

% 

Max 

% 

Mean 

% 

Std. dev. 

% 

All 54578 0 33 0.88 1.71 

W 17022 0 8.1 0.06 0.17 

C1 14995 0 7.6 0.31 0.36 

C5 17298 0 23.1 1.16 0.9 

Bx 5263 0 33 4.27 3.48 

 

All the grade variograms present an important nugget effect. Figure 1 shows omni-directional 

variograms for clarity. They all look stationary with different ranges: more than 125m for W, 80m 

for Bx, around 30m for C1 and C5.  

 

 

(a) (b) (c) 

 
  

 

(d)  (e)  

  

 

Figure 1 Grade variograms. (a) All facies, (b) Waste, (c) Poor, (d) Rich, (e) Very rich 

At this stage, it seems useful to continue considering the four facies for the block modelling, as 

there are enough differences between them. 
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Table 4 presents the probability, when leaving a given facies, to encounter another facies. It must 

be red together with the global proportions of Table 2.  

Table 4 Contact probabilities 

                To 

From 

W C1 C5 Bx 

W  0.8 0.2 0 

C1 0.2  0.65 0.15 

C5 0.05 0.5  0.45 

Bx 0 0.2 0.8  

Main comments are: 

 Bx and W are not in contact 

 When leaving W, the probability to encounter C1 is 0.8, which is much greater than the 

global proportion of C1 (less than 30%). So C1 separates W from C5 and Bx 

 Same remark for the probability to encounter C5 when leaving Bx: C5 separates Bx from 

C1 and W 

 When leaving C1, one can encounter Bx with a low probability (0.15), while the 

probability to encounter C5 (0.65) is more important than the global proportion of C5. 

Same remark when leaving C5 and encountering C1. This shows that C5 tends to surround 

Bx. 

Geometry 

Figure 2 shows direct, cross and ratios of indicator variograms. 

 

i  (h)  
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ij  (h)  

 

 

(b) 
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Figure 2 Facies indicator variograms. (a) Direct, (b) Cross, (c, d) Cross divided by direct variograms 

Comments: 

 Direct indicator variograms (Figure 2a) for C5 and C1 are very close, with a stationary 

behaviour. W presents increasing probabilities due to the location of waste at the western 

periphery of the mineral body (non stationary effect). Breccias are thin objects, mainly 

located in the center of the mineral body, reason why probabilities increase then decrease 

after 50m. 

 Cross variograms between indicators (Figure 2b). The cross variograms between any facies 

and waste resembles to the variogram of waste indicator (with a negative sign). This is a 

non stationary effect that masks the other relationships between the facies.  

 Cross variograms divided by direct ones (Figures 2c and 2d). Apart one exception, all 

facies present spatial correlation (due to spatial sequencing W-C1-C5-Bx) and therefore 

must be estimated together by cokriging if the target is local proportion estimation. 

Exception is C1 and C5 where the probabilities do not depend on the distance. The frontier 

between these two facies marks the limit between poor (mainly to the west) and rich to the 

east. 

Geometry and grades 

We want to specify the behaviour of the grades when moving away from the frontiers defined by 

the indicators so we study Zi(x), the product of the grade by 1i(x). Direct and cross variograms of 

these quantities have been normalised. Figure 3 just presents the most representative variograms 

ratios. 
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Figure 3 (a) Grades variograms divided by grade variances, (b) Cross variograms between grades, (c, d) Cross 

variograms between grades and facies indicators divided by direct variograms 

Comments: 

 Variogram of ZBx (Figure 3a) is very close to Z variogram (Figure 1a) while breccias 

represent just 10% of the data. The contrast of Bx grades with the other grades is so 

important that the non breccias grades play the role of the zero introduced in the ZBx 

calculation. All over the deposit, most of the variance is due to breccias. 

 The cross variograms between the grades Zi (Figure 3b) are all very close to their facies 

indicator homolog (Figure 2b). Considering the grades does not give knowledge on the 

mutual behaviour of the facies. This is linked to the important nugget effect encountered 

on the grade variograms calculated facies by facies (Figures 1b to 1e) and also to the lack 

of dependency between grades from neighbouring facies. 

 There are border effects for each facies (Figures 3c and 3d), but the magnitude is not 

important. For example, the copper grade decreases when moving inside W 

(impoverishment of the mineral body envelop when one goes away from the mineral 

body), but only 0.05% after 150m. The most important gradient is linked to Bx, the 

average grade gains 0.4% after 150m. 

Globally, one can consider that the behaviour of the grades inside the facies is minor compared to 

the mutual behaviour of the facies. 

Cokriging 
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As the facies partition the domain, just three out of four indicators must be used, otherwise the 

cokriging system would be singular. We built a multivariate model and cokriging is done using a 

small moving neighbourhood to follow the non stationarity (maximum distance 60m). It contains 

more than 30 data points on average. We also fit the variogram of Z (without distinction of the 

facies) in order to compare cokriging with common kriging. 

 

 

 

(a) 

 

 

 

 

(b) 

 

Figure 4 Scatter diagrams. (a) Cokriging versus usual kriging, (b) Cokriging versus traditional method 

The scatter diagram between direct kriging and cokriging (Figure 4a) shows an important 

correlation. The standard deviation of the residual around the regression of cokriging estimator 

against direct kriging one is 0.1. Both estimators give similar results. Three reasons can be pointed 

out: 

 The grades follow the sequence W-C1-C5-Bx which leads the mutual organization of the 

facies. When we estimate Z directly, we take into account this sequence naturally as low 

grades mainly concern W and high grades Bx. 

 When one looks to the previous scatter diagram (Figure 4a), it seems that the dispersion is 

more important for the low grades than for the high ones. This could be due to the fact that 

rich blocks are those containing breccias and that the ZBx variogram is similar to the Z one. 

It is probably for low and intermediate grades that cokriging improves the results.  

 All the variograms contain more than 50% of nugget effect and this reduces the impact of 

the method quality on the result as an important part of the calculation is just a local 

average. We repeat both calculations without any nugget effect (for cokriging, but also for 

direct kriging) and the comparison of both results indicates more differences between the 

approaches. The standard deviation of the residuals around the regression line then equals 

0.3%. 

Second comparison concerns the model actually used where facies limits are hand drawn by the 

geologists (Figure 4b). The scatter diagram presents an important dispersion. The standard 

deviation of the residuals of the linear regression of cokriging against traditional is 0.5, same for 

the standard deviation of the residuals of the linear regression of traditional against cokriging. At 

the cutoff 0.5, 13% of the blocks would be rejected by traditional method (but taken by cokriging), 

and 7% of the blocks would be rejected by cokriging and taken by traditional method. 
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Where is the truth? Probably between both approaches and the aim here is not to replace the 

knowledge of the geologists, but to give them tools to quantify their intuition. 

 CONCLUSIONS 

Basic arithmetic considerations show that estimating average grade Z(V), at the scale of block V, 

using facies indicators 1i(x) and Zi(x) (their product with the grade Z(x)), does not require a priori 

a first estimate of local facies proportions. The calculation can be made once using cokriging. 

Then, we study a complex data set of a porphyry copper deposit. The probabilistic interpretation of 

1i(x) and Zi(x) variograms show that the indicators are spatially linked and their knowledge is 

mandatory, the grades Zi(x) being of secondary importance. 

Finally, we compared the results of cokriging to direct kriging (without facies consideration) and 

we noticed very few differences. Reversely, there are important differences when compared to the 

practice consisting in drawing by hand the geological structures, intersecting them with the blocks 

and obtaining by this way local proportions. 

The poor improvement of cokriging here is due to the important nugget effect of the variograms 

and the natural ordering of the facies contacts followed by a same ordering of the grades. 

 So finally, the interest of this presentation is not located in the results themselves, but on the 

methodological sequence that leads to them, giving the calculation priorities. For example in the 

present data set, one must focus a fortiori on the proportions estimation by block, and one can 

affect to each facies an average grade for all the blocks, the results will not change a lot.  

Second lesson is that the variability of the breccias is so important in this deposit that one would 

require much more data to obtain a substantial improvement in the proportion calculation. This 

explains why, finally, the requirement of geologist knowledge is necessary to feed the gaps. But 

one must not forget then that the resulting proportions are calculated by hand.  
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