
sampling and blending conference / perth, wa, 9–11 may 2017 1

Bailer uncertainty evaluation 
in a lithium salar deposit 
s a séguret1, p goblet2, e cordier3 and a galli4,5

ABSTRACT
In salar-type deposits, lithium grades can be measured by bailers introduced at different elevations 
in the drill holes at locations where, later, the brine will be pumped out to recover the metal. 
When they are duplicated, these a priori rudimentary measurements may show large differences 
without indicating whether this is due to the procedure itself or to some physical causes linked to 
the dynamic behaviour of the salar (seasonality, rainfall, underground flow etc). In the reservoir 
presented in the paper, the problem is complicated by the double lack of stationarity of the 
lithium grades: the grades not only increase importantly with the depth but at the same time 
their fluctuations decrease, making it necessary to use non-stationary geostatistical techniques to 
simulate them. Reservoir simulation is developed in two steps: first, geostatistical simulations of 
the lithium grade create possible realisations of the reservoir; then, each geostatistical simulation is 
followed by a pumping simulation that calculates, at each drill hole of a given extraction scenario, 
the lithium produced each year over 40 years. For the set of 100 simulations produced in this 
way, a scenario reduction is made to choose the five most representative simulations where more 
complex calculations will be carried out (for example, changing hydrogeological parameters such 
as porosity and permeability, or the elevation of the filters, the number and the location of the 
pumping and the reinjection drill holes etc). The paper first presents an analysis of the geostatistical 
model sensitivity to the grade uncertainty when measured by bailer. Among the 100 measurements 
at our disposal covering the future production domain, 50 per cent are duplicates measured at the 
same place but at different times. They are randomly sampled to produce five subsets of 75 values, 
which will constitute the future 3D conditioning points for the geostatistical analysis and the 
simulations. For each subset, trend, standard deviation and variogram models are fitted, leading 
to five sets of 20 geostatistical simulations of grades. In this way, the reliability of the different 
parameters involved in the procedure is evaluated, as well as its impact on the pumping results. 
Then, a reconciliation study is conducted between the non-stationary nugget effects encountered in 
the 3D variograms of the lithium grade and a pure statistical analysis of 25 duplicates measured at 
different locations and/or different times. The result is that if the nugget effect reaches 20 per cent, 
which is the case of three conditioning subsets out of five, the reconciliation is good and the nugget 
effect of the variogram model represents the bailer uncertainty, ie the measurement error. Since 
the geostatistical simulation incorporates a nugget effect, it handles the bailer uncertainty and 
the impact on the produced metal is included in the evaluation. The final conclusion is that, after 
the hydrogeological pumping simulations, the initial differences between the five geostatistical 
models do not influence the final results: lithium grades measured by bailers can lead to a robust 
evaluation of the extractable resources, a conclusion that conflicts with conventional wisdom.

INTRODUCTION

Lithium
Lithium consumption is increasing rapidly, driven by a 
growing demand for mobile electricity storage. Most of the 
lithium resources are in evaporitic reservoirs (salars), which 
are also the most interesting from the economic viewpoint 
(Mohr, Mudd and Giurco, 2010; Garrett, 2004). These resources 
are abundant (probably of the order of hundreds of years 

of consumption at the current rate), and therefore shortage 
is not to be expected in the near future. However, the rapid 
increase in demand means a considerable development of the 
production capacity in the coming years. Many companies are 
looking for financial partners to start new projects, partners 
who require a resource classification and risk quantification, 
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as is usual in classical mining. But a salar is not a classical mine 
– one cannot separate the in situ grade from the ‘drainability’ 
of the brine (ie its capacity to be pumped) – and there is an 
acute need for a new methodology.

Deposit description and study objectives
For confidentiality reasons, the data used in this paper are 
synthetic. They reproduce the properties of a real deposit 
located somewhere in the triangle Bolivia-Peru-Argentina. 
These properties are characteristic of most salars of this type. 
In the following, when we refer to ‘the deposit’ or ‘the salar’, 
we mean the synthetic deposit.

The deposit is a clastic reservoir, about 300 m thick, overlying 
an impervious bedrock. It is located 200 m under the surface. 
Figure 1a shows a west–east vertical cross-section. The 
project is at the feasibility stage where a risk analysis must 
be conducted to decide if the production should start and the 
first stage concerns the extractable grades, the porosity and 
permeability having been determined by pumping tests. The 
first analyses conducted by hydrogeologists lead to scenarios 
of future production drill holes where the predicted 40 year 
production curves must be calculated. Figure 1b shows two 

configurations. Here, the aim is to quantify the impact of 
the grade uncertainty on the production curves and on the 
statistical distribution of the simulations.

Bailers
After drilling a hole for exploratory or future production 
purposes, the upper part of the hole is reinforced and cased 
while the deeper part – between a few metres and some 
hundred metres in length – is a filter that lets the brine pass 
through. After a few weeks, the brine inside the hole becomes 
stabilised and reflects the surrounding brine in terms of 
salt density and lithium grade (these variables are highly 
correlated). Then, a bailer – a plastic container that can be 
opened and closed by remote control – is introduced into the 
hole and opened at a given depth (measured by the length of 
the cable used) to capture the brine at this level (Figure 2). The 
bailer is recovered, its content sampled for future analyses 
(the lithium grade in our case), and reintroduced to sample a 
deeper level because all the brine between the sampled level 
and the surface is perturbed by the passage of the bailer. To 
evaluate the range of variation of the bailer fluctuations, some 

FIG 1 – (A) West–east vertical cross-section scheme of a salar; (B) two configurations of future production drill holes.

A B

FIG 2 – Capturing brine at chosen depths by using bailers.
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measurements are replicated two or three times, with a few 
weeks interval.

We have at our disposal a first set of 100 measurements of 
grades in seven drill holes (Figure 3a). They sample elevations 
between 3250 m and 3550 m, representing the whole deposit. 
In this data set, 50 measurements are pairs located at the 
same place and finally, there are only 75 3D spatial locations 
involved. This first data set will be used for the geostatistical 
modelling and the grade simulations.

A second data set is at our disposal, symbolising 
complementary measurements made while the geostatistical 
study is done, a situation which often occurs. We use it for 
a statistical reconciliation, as shown in the following. In the 
future, one could imagine incorporating such complementary 

measurements in the geostatistical study. The second data 
set contains replicates located at different places and/or 
measured at different times, giving 50 differences on which 
a pure statistical analysis is conducted to reconcile them with 
the nugget effect encountered in the variogram calculated 
with the first data set. As these measurements cover a domain 
larger than the domain of interest, the real comparison is 
made by using the 25 differences belonging, approximately, 
to the future production zone (Figure 3b).

geostatistical model for the grades
The scatter diagram between the grade and the elevation 
(Figure 4a) shows that the grade increases with the depth, 
which could be due to gravity segregation, since the salinity 
(well correlated to the lithium grade) leads to a fluid density 
that increases with depth up to values of around 1.2. The 
gradient is high: grades are multiplied by two after 300 m 
and this requires the use of non-stationary geostatistical 
techniques (Matheron, 1969) to model the spatial variability 
of the lithium grades.

A first approach could consist in fitting, by least squares, 
a linear trend to assess residuals supposed to be stationary. 
The idea is to apply universal kriging techniques (Matheron, 
1969). But after fitting such a trend and looking at what is 
called ‘residuals’ (the grade value minus the trend model), 
one sees that if there is, on average, no remaining trend for 
the behaviour of the grades, this time the variance of the 
residuals is not stationary either (Figure 4b) and the variance 
(or more precisely its square root) must also be modelled. 
Note that the fact that low-grades fluctuate more than high-
grades is unusual in mining and environment studies, where 
the reverse often happens and one usually says that there 
is a ‘proportional effect’ (Matheron, 1974). The decrease 
of variability with elevation is likely to be related to flow 
heterogeneity: the deepest, lithium-rich, part of the reservoir 
is made of rather coarse clastic material with good hydraulic 
conductivity, where flow is probably governed by regional 
gradients and gravity (high salt content). The upper part, as 
mentioned before, has a lesser lithium content. In this part of 
the reservoir, which extends to the surface, flow is governed 
by local recharge/discharge mechanisms. Finer materials and 
the presence of clay confer a lower hydraulic conductivity 
and, probably, a more heterogeneous velocity field. Between 
these two layers, a discontinuous clay layer marks the top 
of the reservoir. Complex mixing mechanisms around this 
discontinuous separation are the most probable causes of 
lithium concentration variations at the top of the reservoir. 
This is a very common characteristic of this type of deposit.

To account for the lack of stationarity, we set, for the lithium 
grade Li(x,y,z):

, , , ,Li x y z z NR x y z m zv= +^ ^ ^ ^h h h h (1)

with
NR(x,y,z) the centred normalised residuals with the 

variogram γNR(h)

σ(z) the standard deviation of the residual approximated 
by z a z bv = +l lt^ h

m(z) the trend approximated by m z a z b= +t ^ h

The parameters a, b, a’, b’, are obtained by least squares 
minimisation and the simulation process (called ‘turning 
bands’, Matheron, 1973) consists in first simulating the 
normalised residuals NRS(x,y,z), conditionally to the 
experimental residuals obtained by:

FIG 3 – Horizontal cross-sections showing data location. (A) Crosses 
represent the drill hole location where grades are measured, on average 

eight measurements per drill hole at a fixed time plus between three 
and four pairs of randomly selected duplicates per drill hole. (B) Black 

dots represent the location of replicates to be statistically analysed for a 
reconciliation with the geostatistical analyses conducted on the previous 
data set (A). The small rectangular domain at the top corresponds to the 

simulation domain. The entire domain is covered by 50 pairs of measurements 
located at the same place in 3D (but measured at different periods), the 

small rectangular domain reduces to 25 the number of differences.

A

B
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and then rebuild the grades LiS(x,y,z) according to the formula:

, , , ,Li x y z z NR x y z m zS Sv= +t t^ ^ ^ ^h h h h (3)

The values are produced at the nodes of a fine grid (typically 
40 m × 40 m × 1 m vertically). Each simulation reproduces 
the variogram model and the conditioning data. Each of as 
many simulations as wanted (100 in our case) represents a 
possible deposit. The variogram model depends on the trend 
model, the standard deviation model and the data set S that 
produced these parameters; they condition the simulations. 
In the following discussion we call the following set the 
‘geostatistical model’:

, , ,S m z z h
NR

v ct t^ ^ ^h h h" ,: a geostatistical model (4)

UNCeRTAINTy OF The geOSTATISTICAL 
mODeL
Among the 100 measurements at our disposal, 50 are fixed 
once and for all because they have not been replicated for 
unknown reasons, and 50 are duplicates measured at the same 
place but at different times. The question is how to choose 
the ones we must keep. We suppose that for each pair, the 
measurements are independent so that there is no reason to 
choose one value rather than another. To evaluate the impact 
of this uncertainty, the following procedure was applied:
 • for each of the 25 pairs of duplicates, randomly select one 

value, and add to the 50 fixed values, producing a subset 
of 75 values

 • repeat five times to produce five subsets S1...S5 of 75 
values each

 • for each subset Si , calculate ,m z z
i i
vt t^ ^h h and γNRi(h)

 • for each geostatistical model , , ,S m z z h
i i i NRi

v ct t^ ^ ^h h h" ,, 
conduct 20 geostatistical simulations

 • for each simulation, which is a 3D grid of grades, apply 
a pumping simulation to evaluate the drainable resource

 • among the 100 simulations obtained, apply scenario 
reduction techniques to find the five most representative 
simulations and determine if the bailer uncertainty has an 
impact on the distribution of the simulations.

The last two points will be treated in the following section. 
We now describe the geostatistical part.

Figure 4a shows the five lines m z
i
t ^ h obtained by least square 

minimisations on the subsets Si. They represent the average 
behaviour of the grade along the elevation. They are very 
close to each other and close to the line m z

all
t ^ h obtained by 

using all the data. As we want a model as simple as possible, 
this sole drift m z

all
t ^ h will be subtracted from the grades to 

calculate the residuals.
Figure 5a shows the lines z

i
vt ^ h fitted on the standard 

deviations of the residuals. The differences this time are 
greater than previously, especially for the low elevations 
and we have to keep different standard deviation models for 
each subset. These models are used to divide the residuals 
and obtain the normalised residuals (Equation 2) on which 
the variograms are calculated. The horizontal variograms 
(Figure 5b) are approximately the same while the vertical 
ones (Figure 5c) can be grouped into two sets: a first one (S1, 
S3, S4), leading to a local sill of around 0.5 and a nugget effect 
of 20 per cent (compared to the global variance of 1), and a 
second set of variograms (S2, S5) leading to an apparent sill 
of 0.25 and a nugget effect of ten per cent. As for the standard 
deviations, each set Si must have its own variogram model. 
Note the differences between the horizontal apparent sills 
(around 1.5) and the vertical apparent sills (less than 0.5), 
while the theoretical sill of normalised residual is 1 (around 
1.1 in practice for all the subsets). This kind of ‘zonal’ 
anisotropy is another particularity of lithium grades in this 
type of deposits.

Conclusion:
 • m(z) is robust as all the subsets lead to the same model
 • σ(z) is less robust, one notices differences between the 

models

FIG 4 – (A) Scatter diagram between the elevation and the lithium grades. The grades decrease with increasing elevation. Lines show the linear trends fitted by least 
squares when using all the 100 measurements (including duplicates) or the five randomly selected subsets. The lines are almost identical. Black dots joined by dotted 

lines represent averages by elevation classes, ie conditional expectation curve which is clearly linear. (B) Residuals obtained by calculating the differences between 
the lithium grades and the line ‘All’ of Figure 4a. Surrounded stars are by pair the duplicates randomised. The variability of the residuals increases with the elevation.

A B
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 • same for γNR(h), which leads to two different nugget 
effects: ten per cent and 20 per cent.

Before proceeding to the following step (pumping simulation 
and scenario reduction), one must analyse in detail the nugget 
effects encountered in the variograms.

(geO)STATISTICAL ReCONCILIATION
Could the nugget effect encountered in the variograms, 
represent measurement errors, or, more generally, natural 
bailer fluctuations, meaning by ‘natural’ the possibility that 
the measurements might depend on the season, for example, 
something that we did not notice but which is still possible. 
The knowledge of the lithium industry is weak today, because 
until now no real investment has been made in deep research, 
as the profits are low. With prices that have been rising for a 
decade, it is probable that the situation will change soon and 
the present work is an indication of this tendency. At present, 
we do not have at our disposal continuous time series of grades 
over several years with which to calculate auto-correlations 
in time. This is why we speak of bailer ‘uncertainty’ and not 
necessary bailer ‘measurement errors’.

By their construction, the normalised residuals NR(x,y,z) 
have a mathematical expectation equal to zero, and a variance 
equal to 1, and we add the hypothesis that for each location 
(x,y,z), all the replicates are independent of one another. In the 
following, indices i and j represent statistical realisations of 
measurements (ie random samples).

By (1), a difference between two measurements in the same 
place is expressed by:

ΔLi(x,y,z) = σ(z)ΔNR(x,y,z) (5)

Because E[NRj(x,y,z)] is stationary and equal to zero, we have:

VAR[ΔNR(x,y,z)] = E[(NRi(x,y,z) – NRj(x,y,z))2]

= E[(NRi(x,y,z)2] + E[(NRj(x,y,z)2] – 2E[NRi(x,y,z)NRj(x,y,z)]

Because VAR[NR(x,y,z)] is stationary, we have:

VAR[ΔNR(x,y,z)] = 2E[(NRi(x,y,z)2] – 2E[NRi(x,y,z)NRj(x,y,z)]

For each location (x,y,z), the independence of the random 
samples implies their non-correlation:

E[NRi(x,y,z)NRj(x,y,z)] = E[NR(x,y,z)]2

VAR[ΔNR(x,y,z)] = 2VAR[NR(x,y,z)] = 2

A result, combined with (1), which gives, finally:

VAR[ΔLi(x,y,z)] = σ2(z)VAR[ΔNR(x,y,z)] = 2σ2(z)

Let  represent the nugget effect of the normalised residuals 
variograms, expressed as a percentage of the sill. If the nugget 
effect is only due to bailer fluctuations, then, in the analyses of 
the statistical variances of type (5) differences, the following 
relationship must be verified:

, ,Std dev x y z
z

2
Li av
D-

=
^

^
h

h
6 @  (6)

We have at our disposal a second data set of measurements 
that covers a larger domain than the previous one (Figure 3b) 
and is essentially made of replicates (for some locations, the 
measurements are repeated up to four times), giving a set of 

FIG 5 – (A) Linear modelling of the residual standard deviation as a function 
of the elevation, depending on the data subset. Differences are large for low 

elevations. (B) Horizontal variograms of the normalised residuals for each 
data subset and all the data. Dotted line represents the normalised residuals 

variance when all the data are used, it is close to 1 (1.1). (C) Vertical variograms 
of the residuals for each data subset and all the data. For such small distances 
(200 m), the vertical variograms have not reached the experimental variance.

A

C

B
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50 differences ΔLi(x,y,z) that we analyse to see if the results 
are coherent with the experimental nugget effects. So the left-
hand side of Equation 6 is built on this second data set, and 
we see the consistency with the right-hand one of (6), built on 
data file 1.

The first property of (6) is that the bailer fluctuations depend 
on the elevation. Is this true? Figure 6a presents the standard 
deviations of the differences grouped into four classes of 
elevations so that each blue star is calculated by around ten 
differences, and this is certainly too few. Nevertheless, the 
figure shows that the fluctuations increase significantly with 
the elevation.

Do they increase as a function of the standard deviation 
model? It becomes necessary to reduce the analysis to the 
domain covered by the variogram and other geostatistical 
parameters (Figure 3b), and this reduces the number of 
differences to 25. Figure 6b shows the three elevation classes 
(blue stars) obtained. Less than ten points for a robust 
estimation of a variance is hardly enough but, nevertheless, 
the figure shows that, for the models associated with a 
nugget effect close to 20 per cent, the results are coherent. 
They correspond to the geostatistical models S1, S3 and S4. 
Remember that we not only test a nugget effect value, but 
also a standard deviation model as shown by (6), as well 
as a drift model. For the two other sets, namely S2 and S5, 
associated with around ten per cent nugget, the coherence is 
not obtained.

Conclusions:
 • it is possible to consider the nugget effect encountered in 

the residual variograms as due only to bailer fluctuations
 • the difficulty is to assess the correct value of the nugget 

effect which must here be equal to 20 per cent
 • for the future, a recommendation is made to the industrial 

partner to systematically make duplicates in order to 
thoroughly sample the bailer fluctuations all over the 
domain and not privilege unique data points over ones 
duplicated and randomly selected

 • it is important to have a second data set made of replicates 
and different from the data set used for the models and 
the simulation as it may help to define the value of the 
nugget effect and eventually the models for m(z) and σ(z).

With each of the five geostatistical models (4), the simulation 
of the normalised residuals is conducted, conditionally to each 
subset Si, and the grades are rebuilt using (3). Then, for each 
of the 100 equivalent deposits produced in this way, pumping 
simulations are made and scenario reduction carried out.

pUmpINg SImULATIONS
The challenge is now to simulate the lithium production, 
based on the concentration values obtained from the hundred 
geostatistical simulations, by a Finite Element modelling of 
the exploitation domain. The METIS code (Goblet, 2010), 
developed by the Geosciences Department and used in 
numerous studies of natural and artificial tracer simulations 
(Castro, Patriarche and Goblet, 2005), solves the equations 
of flow and solute transport in 3D space, taking into account 
the effect of density on flow. The hydrogeological parameters 
(conductivity and porosity) are attributed to the mesh cells 
according to a geological model built from field information. 
The main result obtained is the lithium production curve for 
each borehole. A set of representative curves are shown in 
Figure 7a for one specific simulation of lithium grades and 
the squared pumping scenario of Figure 1b.

In Figure 7b, the total amount of lithium recovered after 
40 years of exploitation is shown for a set of 100 simulations. 
The five groups of 20 simulations do not exhibit a different 
behaviour in terms of average value and dispersion.

SCeNARIO ReDUCTION
Why reduce the number of possible scenarios? Over the past 
two decades, computer power has increased enormously, 
and it is now possible to generate hundreds of conditional 
geostatistical simulations for a deposit. The advantage of 
having a large number of simulations is that it provides a 
better idea of the potential upside and downside, and some 
simple calculations can be performed on these simulations. 
Unfortunately all the simulations that can be generated cannot 
be developed into economic studies. For example in the field 
of hydrocarbons, quite close to our case, post-processing 
involves complex fluid flow simulations with specialised 
software and also a large amount of engineer time to define 
the different architectures of infrastructures and finally the 
economic study. So our goal is to reduce the set of simulations 
to a more manageable size by selecting a representative subset 

FIG 6 – (A) Bailer fluctuation along the elevation. The dotted line indicates the average tendency. The spatial domain concerns the whole salar. 
(B) Reconciliation between the pure statistical analyses of the bailer fluctuations (data set 2, variances of the differences) and the spatial analyses 

of the grades (data set 1, nugget effect of the variograms). For the conditioning data sets S1, S3 and S4, where the nugget effect α is around 
20 per cent, the reconciliation is good; for the two other sets, where the nugget effect α is around ten per cent, the reconciliation is poor.

A B
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of them with a probability associated with each element of 
this subset. The size of the final subset is initially decided by 
the user. In general, it is the maximum number of simulations 
that can be post-processed with the available resources.

The two key elements in any scenario reduction method are:
1. defining a suitable indicator to measure the distance 

between any two simulations
2. selecting the best subset of the predetermined size

See (Armstrong, Ndiaye and Galli, 2010; Armstrong, 2012; 
Armstrong et al, 2013; Heitsch and Romisch, 2003) for more 
information of the methodology used and examples in mining.

To illustrate the approach we give the following intuitive 
image. Consider each simulation as a point in a high 
dimensional space in which we can calculate the distances 
between simulations. Note that these distances must be 
related to the work goal after the scenario reduction. Keep in 
mind as well that the topology of the cloud ‘N geostatistical 
simulations’ is not the same as the ‘N flow simulations’ cloud 
even if in general they are related. It is also clear that the result 
depends on the dimensions of the space in which we immerse 
the simulations (the dimensions represent the information 
which is considered for each simulation) and the distance 
measure used.

We must also have in mind that the best subset 
‘k’ simulations’ is not a subset of ‘k simulations’ extracted 
from the optimal set of k (k>k’) simulations.

To apply this methodology to the present case of lithium 
deposit, the information used is the yearly production of 
each of the 20 wells during 40 years, discretised in 52 time 
intervals. There are many ways to represent this information 
in a high dimensional space. Here we study only two of them, 
and two variants combining them:
1. We can represent a flow simulation by a vector of 20 × 52 

points obtained by concatenating the production of each 
well. This is CASE 1.

2. As it is often interesting to compute the total cumulated 
production versus the 52 time intervals, one might use 
only this information to represent the simulation. This is 
CASE 2 and the space dimension is only 52.

CASE 1 fully represents the variability of each one of 100 
fluid flow simulations; it allows, for example, to take into 
account that some areas are special. The second representation, 
CASE 2, is more synthetic since the information of the 20 wells 
is summarised by a well with the total cumulative production. 
It is closer (although far more detailed) to the conventional 
method where one simply looks at the histograms of the total 

output. We decided to combine the two approaches by using 
a distance matrix, which is the weighted average of the two 
preceding distance cases. In this case the space in which we 
are working is 20 × 52 + 52. We tested the cases where the 
distance matrix of CASE 1 is weighted by 0.8 (respectively 0.6) 
and the distance matrix of CASE 2 by 0.2 (respectively 0.4).

The result for CASE 1 is represented in Table 1.
It is instructive to calculate the average tonnage of the 

product after 40 years, obtained from the five best simulations 
using their probability computed while performing scenario 
reduction (Table 2).

The differences between the results are extremely small 
and the maximum relative error compared to the average of 
the 100 simulations is below two per cent. So with our five 
best simulations and probabilities we arrive at a very good 
estimate of the average of 100 simulations. This is, of course, 
not an absolute criterion, but the reduction process seems to 
work very well. However, note that the spread of the total 
productions of the 100 simulations (Figure 7b) is not very 
large. Moreover, the reduction scenario seems not to be 
sensitive to the fact that there are five sets of geostatistical 
simulations.

FIG 7 – (A) Simulated lithium recovery for a given lithium geostatistical simulation and squared scenario of Figure 1b. The cumulated amount 
of lithium recovered at some production borehole is shown as a function of time. (B) The total amount of lithium recovered after 40 years for 

a set of 100 simulations of lithium grades. No particular behaviour is visible for each subset (labelled S1 to S5) of 20 simulations.

A B

CASE 1 CASE 2 0.6 CASE 1 + 0.4 CASE 2 0.8 CASE 1 + 0.2 CASE 2
102% 99% 99% 99%

TABLE 2
Relative average computed with the five optimal simulations 
using their associated probability; 100 per cent corresponds 

to the average of all initial (100) simulations.

Best simulations 16 30 61 89 94

Associated probability (%) 25 50 15 5 5

Percentile (%) 20 45 90 50 95

Geostatistical model S2 S2 S4 S5 S5

TABLE 1
Results of scenario reduction for CASE 1. The first line gives the optimal 

simulation numbers; the second one the probability associated with 
each simulation, for further computations; the third one indicates the 

percentile corresponding to each optimal simulation in the initial set of 
100 simulations; and the fourth one the geostatistical model involved.
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CONCLUSIONS
Classifying the drainable resources of a salar-type lithium 
deposit requires relating the geostatistical 3D simulations of 
grades to hydrogeological simulations (to quantify the metal 
extracted by pumping) and to scenario reduction (to find 
the most representative simulations among the hundreds or 
thousands produced). In this paper, we have focused on the 
grade uncertainty when measured by bailers.

The problem here is complicated by the lack of stationarity 
of grades that not only strongly increase with depth, but 
also fluctuate differently, depending on the elevation. So a 
geostatistical model is not only a variogram, but also a drift 
and a standard deviation model.

We have shown how the bailer fluctuations influence 
the geostatistical model. Five equivalent models were also 
evaluated, and their essential difference was their nugget 
effect values: three models lead to a nugget effect of around 
20 per cent, two to ten per cent. By using an auxiliary data set 
made of replicates, it was possible to show that 20 per cent 
is the value that must be retained if the user wants just one 
model. In our case, the five models were tested along the 
complete methodological chain. Whether one considers the 
pumping results, or the scenario reduction, the fluctuations 
of the geostatistical models have no impact, and any of the 
models can be used to conduct the simulations.

In conclusion, we recommend systematic duplication of 
each measurement at all locations, so that sensitivity analyses 
can be conducted as done here. Then, the rudimentary bailer 
measurements can be used to carry out robust drainable 
resources estimations and classifications.
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