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Abstract Simulations of object-based models are widely used in various fields of
geoscience to represent subsurface heterogeneities. A prototype of such a model is the
Booleanmodel. Based on the stability and decomposition properties, a novel algorithm
is proposed to simulate Boolean models, stationary or not, subject to foreground and
background point conditions. This algorithm amounts to simulating two independent
Boolean models, namely an avoiding Boolean model made of objects that avoid all
conditioning data points and a hitting Boolean model, the objects of which hit one
or several foreground conditioning data points. The first model is simulated using
thinning techniques, and the second model is simulated by particle filtering. Overall,
the algorithm produces exact simulations. It is very fast and easy to implement.

Keywords Stochastic geometry · Geostatistics · Poisson process · Particle filtering ·
Importance sampling

1 Introduction

Stochastic models are commonly used to characterize subsurface heterogeneities for
the management of natural resources, such as water, minerals, oil and gas. These
models have been developed to generate different synthetic geological architectures
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and property fields, the realizations of which (conditioned to observations) can be used
to quantify the uncertainties and risks associated with different development options
(Pyrcz and Deutsch 2014; Joseph et al. 1993; Damsleth et al. 1992). Object-based
models are categoricalmodels used to represent facies or rock types,with object shapes
mimicking those of actual geological entities or sedimentary bodies. The Boolean
model is the simplestmodel in this generic family, as it assumes independence between
random objects. This simplicity allows for the development of efficient algorithms that
ensure the reproduction of the data and the statistical properties of the various outcomes
(Vargas-Guzmán and Al-Qassab 2006; Allard et al. 2006; Lantuéjoul 2002).

A Boolean model X is defined as the union of independent random objects located
at the points of a Poisson process. The model is stationary if the underlying Poisson
process is homogeneous and the objects are identically distributed; it is nonstationary
otherwise. This paper deals with the simulation of a Boolean model conditioned on a
set of observation points. Among these points, the points in the background B defining
the background condition, that is, X ∩ B = ∅, and the points in the foreground F
defining the foreground condition, that is, F ⊂ X , can be distinguished.

This simulation problem is usually solved using a Markov chain Monte Carlo
algorithm (Gedler 1991; Lantuéjoul 2002; Allard et al. 2006); objects are added and
removed according to a birth-and-death Markov kernel, the equilibrium distribution
of which is the conditional distribution of the Boolean model. The algorithm is run on
a population of random objects that fulfill the preset constraints until the equilibrium
distribution is reached. It is quite general but may be slow due to a burn-in phase
that is required to discard the objects of the initial population. Moreover, the rate of
convergence of theMarkov chain is not easy to establish. Froma theoretical standpoint,
the convergence rate is governed by the second largest eigenvalue of theMarkov kernel
that has to be estimated (Lantuéjoul 2002). Fromapractical standpoint, aMarkov chain
may stay in a metastable state of equilibrium for long periods. This prompted Kendall
and Thönnes (1999) to develop an algorithm based on a specific coupling technique
originally proposed by Propp andWilson (1996). This algorithm provides exact, rather
than approximate, conditional simulations, but it applies only to uniformly bounded
objects. In this paper, a new, sequential and exact algorithm is proposed for simulating
a Booleanmodel. It rests on two nonstandard properties of the general Boolean model:

(i) Decomposition property a conditional Boolean model can be split into two inde-
pendent Boolean models. Each object belongs to the hitting Boolean model or to
the avoiding Boolean model depending on whether or not it contains foreground
conditioning data points.

(ii) Stability property a conditional Booleanmodel that is subject only to a background
condition is a Boolean model with appropriate Poisson intensity and distribution
of objects.

Whereas the simulation of the avoiding Boolean model requires nothing more than
a simple thinning technique, that of the hitting Boolean model is performed using a
particle filter that sequentially assimilates the foreground conditions.

The paper is organized as follows. Section 2 gives some background on the statis-
tical characterization of random sets, as well as a brief summary of Boolean models.
Their stability and decomposition properties are established. Section 3 is specifically
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dedicated to the design of the developed algorithms. It includes the simulation of
objects using weights to compensate for the presence of conditioning points and the
bounded nature of the simulation domain. It also explains the general principles of
the utilized particle filtering techniques. Section 4 presents a detailed illustration of
the algorithm, followed by a discussion concerning the performance of the proposed
algorithm in terms of its memory requirements, speed and range of applicability.

2 Boolean Model: A Few Properties

As a topologically closed random set, a Boolean model has its statistical properties
completely specified by its hitting and avoiding functionals (Matheron 1975). These
characterization tools are discussed first.

2.1 Hitting and Avoiding Functionals

Any random closed set X on R
d has its statistical properties characterized by a func-

tional, denoted as TX , which assigns the probability that X intersects each compact
subset K of R

d

TX (K ) = P{X ∩ K �= ∅}.

This functional is called the hitting functional of X . It plays the same role for X as
a cumulative distribution function does for a random variable. Its complement to 1 is
called the avoiding functional of X

QX (K ) = 1 − TX (K ) = P{X ∩ K = ∅}.

Although these functionals provide the same probabilistic information, it frequently
happens that the properties of random sets are more conveniently expressed using one
functional rather than the other. For example, consider the union of two independent
random closed sets X and Y . The hitting and avoiding functionals of their union are
equal to TX∪Y = TX + TY − TX × TY and QX∪Y = QX × QY , respectively. Their
intersection is characterized by TX∩Y = TX ×TY and QX∩Y = QX +QY −QX ×QY .

2.2 Boolean Model

ABooleanmodel X is defined as the union of a family of independent random compact
sets (called objects here for short) located at the points of a Poisson process. More
formally, a Boolean model can be written as

X =
⋃

s∈P
As, (1)

where
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Fig. 1 Boolean models of discs (left) and Poisson polygons (right)

– P is a Poisson (point) process with intensity function (θ(s), s ∈ R
d) that is

assumed to be locally integrable;
– (As, s ∈ R

d) is a family of nonempty and mutually independent objects. As a
randomclosed set, each As possesses a hitting functionalTs(K ) = P{As∩K �= ∅}
and an avoiding functional Qs(K ) = P{As ∩ K = ∅}.

Figure 1 shows a few examples of Boolean models.
Since the Poisson intensity is locally integrable, the corresponding Boolean model

is a closed random set (Matheron 1975). Moreover, the number of objects hitting a
compact subset K is Poisson-distributed with mean

ϑ(K ) =
∫

Rd
θ(s) Ts(K ) ds, (2)

(Matheron 1975; Lantuéjoul 2002), from which it results that the avoiding functional
of the Boolean model is

QX (K ) = exp

(
−

∫

Rd
θ(s) Ts(K ) ds

)
. (3)

Starting from the objects of X and a subset V of R
d , the avoiding and the hitting

processes are respectively defined by

XV =
⋃

s∈P
As∩V=∅

As and XV =
⋃

s∈P
As∩V �=∅

As . (4)

Despite their cumbersome notations, these random sets possess simple interpretations
(see Fig. 2).

The main properties of XV and XV are summarized in the following proposition.
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V

XV XV

Fig. 2 Decomposition of X into XV and XV

Fig. 3 Example of sets of XV type (left) and XV type (right)

Proposition 1 X = XV ∪ XV . Moreover, XV and XV are two independent Boolean
models with the following avoiding functionals:

QXV (K ) = QX (K ∪ V )

QX (V )
QXV (K ) = QX (K ) QX (V )

QX (K ∪ V )
· (5)

The proof of this proposition is deferred to Appendix A.
Figure 3 shows an example of such random sets. Their objects are those of the

Boolean model of discs in Fig. 1. The points in V are represented by small black
circles. The decomposition of X into XV and XV reveals many hidden objects. Note
also that the objects of XV are much larger than those of XV .

More generally, the construction of XV and XV can be iterated. Let U and V be
two subsets of R

d . Proposition 1 shows that the random set

XV
U = (

XV )
U = (

XU
)V

,

is a Boolean model with the avoiding functional

QXV
U
(K ) = QXV (K )

QXU∪V (K )
· (6)
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This formula will play an important role in the subsequent decomposition of the
conditional Boolean model into two simpler, independent models.

2.3 Conditional Boolean Model

Now, let X be a Boolean model along with two disjoint subsets B and F of R
d , where

F is finite. The Boolean model subject to the background condition X ∩ B = ∅ and
the foreground condition F ⊂ X is denoted by X (B, F). Its avoiding functional is
related to that of X according to the following formula

QX (B,F)(K ) =
∑

C⊂F (−1)|C|QX (K ∪ B ∪ C)
∑

C⊂F (−1)|C|QX (B ∪ C)
, (7)

where |C | denotes the cardinality of C (see Appendix B for the proof). This equation
shows that, in general, a conditional Boolean model is not a Boolean model. A notable
exception is when only background conditions are imposed. In that particular case,
F = ∅, and the formula simplifies to

QX (B,∅)(K ) = QX (K ∪ B)

QX (B)
= QXB (K )

due to Proposition 1. Hence

Proposition 2 (Stability property) If F = ∅, then the conditional Boolean model is
equivalent in distribution to the Boolean model XB

X (B, ∅) ≡ XB . (8)

In the general case, by applying formula (7) to the Boolean model XF and replacing
QXF by its expression (5), we obtain

QXF (B,F)(K ) = QX (B ∪ F)

QX (K ∪ B ∪ F)

∑
C⊂F (−1)|C|QX (K ∪ B ∪ C)
∑

C⊂F (−1)|C|QX (B ∪ C)
·

Thus QXF (B,F)(K ) appears to be the product of two fractions. According to Eqs. (5)
and (7), the first fraction is the reciprocal of QX (B∪F,∅)(K ), and the second is nothing
but QX (B,F)(K ). We thus obtain the following property

Proposition 3 (Decomposition property)

QX (B,F)(K ) = QX (B∪F,∅)(K ) QXF (B,F)(K ). (9)

This formula constitutes the starting point of the conditional simulation algorithm that
is to be presented in the next section.
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Fig. 4 Parameter space associatedwith the objects of a unidimensionalBooleanmodel of randomsegments.
The objects containing the conditioning point c belong to a cone pointed at (c, 0)

3 Sequential Simulation of a Conditional Boolean Model

The objective of this section is to present a novel algorithm for simulating a Boolean
model X in the domain D, subject to the conditions that a finite subset F is contained
in the foreground and that an arbitrary subset B is contained in the background. For
the sake of simplicity, F is assumed to be part of D.

Let us start by applying the decomposition property to the Boolean model XD .
Since

(
XD

)
F = XF , we obtain by Eq. (9)

QXD(B,F)(K ) = QXD(B∪F,∅)(K ) QXF (B,F)(K ). (10)

This formula shows that XD(B, F) has the same distribution as that of the union of two
independent random sets, namely XD(B ∪ F, ∅) and XF (B, F). The first random set
is subject only to background conditions. The second random set has a finite simulation
domain. Each simulation algorithm will be presented in turn.

To gain a better understanding of how these algorithms work, it can help to show
them running on a simple unidimensional Boolean model of random segments. The
rationale for such a choice lies in the fact that each object is represented by two
parameters (location and length) and is thus susceptible to a graphical representation
on a plane. For instance, consider an object [s − r, s + r ] of length 2r located at the
Poissonpoint s. This object contains a conditioningpoint c if andonly s−r ≤ c ≤ s+r ,
or equivalently, |s − c| < r . In other words, the objects containing c belong to a cone
pointed at (c, 0) in the parameter space (see Fig. 4).

Figure 5 shows what a conditional simulation looks like in the parameter space.
The blue and yellow domains contain the points corresponding to the random objects
of XD(B ∪ F, ∅) and XF (B, F), respectively. The yellow domain is a finite union of
cones that have the foreground conditioning points as apexes. Each such cone must
contain at least one point. The gray cone associated with the background conditioning
point must be devoid of points. The number of points in the blue domain can be
arbitrary.

123



Math Geosci

•
c1 ∈ F

•
c2 ∈ F

•
b ∈ B

•

•
•

•
•

•
R

r

D

Fig. 5 Example of a conditional simulation of a unidimensional Boolean model of segments in the param-
eter space. The blue points represent the objects of the avoiding model XD(B ∪ F, ∅), and the orange
points represent those of the hitting model XF (B, F)

3.1 Simulation of XD(B ∪ F,∅)

According to the stability property, we have XD(B ∪ F, ∅) ≡ XB∪F
D . This leads to

the following thinning algorithm, where V is written in place of B ∪ F :

Algorithm 1 Simulation of XD(V, ∅)

Require: Simulation domain D
Require: Set of avoiding conditions V
1: X = ∅

2: generate the number of objects n ∼ Poisson
(
ϑ(D)

)

3: while n > 0 do
4: generate a location s ∼ θ(·) T·(D)/ϑ(D)

5: generate an object As that hits D
6: if As ∩ V = ∅ then X = X ∪ A(s)
7: n = n − 1
8: end while
9: return X ∩ D

The main difficulty in this algorithm is the simulation of an object As hitting D.
This must be done on a case-by-case basis. The illustration section will show how to
proceed with an example, but other examples can be found in Lantuéjoul (2013).

3.2 Simulation of XF(B, F)

The task is rather simple when F is a singleton, for example, {c} (it suffices to generate
successive independent copies of XB{c} until a nonempty copy has been produced), but
it becomes increasingly complicated as the number of points in F increases (com-
binatorial issues appear when an object can cover several points). In this section,
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the proposed strategy for coping with this problem is to sequentially assimilate the
conditioning points using a particle filter (Del Moral 2004).

Suppose that F = {c1, . . . , cN } contains N points. These points can be totally
ordered in an arbitrary way to define an increasing series of constraints F0 ⊂ F1 ⊂
· · · ⊂ Fn ⊂ · · · ⊂ FN , with F0 = ∅ and Fn = {c1, . . . , cn}when n ≥ 1. Consider the
Booleanmodels Xn = XB

Fn
= XFn (B, ∅) andWn = XB∪Fn−1

{cn} = X{cn}(B∪Fn−1, ∅).
A direct application of Eq. (6) gives QXn = QXn−1 QWn , which implies that Xn is
distributed like the union of Xn−1 and the independent “innovation“ Wn

Xn ≡ Xn−1 ∪ Wn . (11)

In other words, the sequence
(
X1, . . . , XN

)
is Markovian, and

QXF (B,F)(K ) =
N∏

i=1

QXci (B∪Fi−1,∅)(K ).

Starting from this Markov chain of Boolean models, a particle filter can now be
designed. Instead of dealing with a single Markov chain of Boolean models, we con-
sider the evolution of a population of K suchMarkov chains (or particles)

(
ξ (k)

)
1≤k≤K

with each ξ
(k)
n = (

X (k)
i

)
1≤i≤n . Each transition combines a proposition step and a

resampling step, which are defined as follows:

– The proposition step depends only on the Markov dynamic (11). At transition n,
K candidate particles

(̃
ξ

(k)
n

)
1≤k≤K are generated by setting X̃ (k)

i = X (k)
i for each

i < n and X̃ (k)
n = X (k)

n−1 ∪ W (k)
n .

– The resampling step checks the foreground conditions
(
Fn ⊂ X̃ (k)

n
)
1≤k≤K satisfied

by the candidate particles. For each k ∈ {1, . . . , K }, we independently set ξ (k)
n =

ξ̃
(k̇)
n , where k̇ is a random index generated from the distribution

ωn(k) =
1
Fn⊂X̃ (k)

n∑K
�=1 1Fn⊂X̃ (�)

n

1 ≤ k ≤ K .

It may happen that Fn is not totally contained in any X̃ (k)
n , in which case ωn is not

defined. Then, the procedure must be restarted with a larger number of particles.

The Markov dynamic can be summarized by

ξn−1
proposi tion−→ ξ̃n

resampling−→ ξn .

Provided that the number of particles is sufficiently large, all resampling proba-
bilities considered are well defined. The particle filter has thus produced K gradual
realizations of the conditional Boolean model. It then suffices to pick one of them at
random to obtain a realization of XF (B, F).

123



Math Geosci

Algorithm 2 Sequential simulation of a conditional Boolean model XF (B, F)

Require: Two subsets B and F = {c1, . . . , cN } ⊂ D
1: set ξ = (∅)k∈1:K
2: set C = ∅

3: for n = 1 to N do
4: if n > 1 then C = C ∪ {cn−1}
5: for k = 1 to K do
6: generate Boolean model W ∼ XB∪C{cn } (cf. Algorithm 1)

7: set ξ̃ (k) = ξ(k) ∪ W
8: end for

9: set ωn(k) = 1
C⊂ξ̃ (k)∑

k′∈1:K 1
C⊂ξ̃ (k′)

for each k = 1, ..., K

10: for k = 1 to K do
11: generate � ∼ ωn
12: set ξ(k) = ξ̃ (�)

13: end for
14: end for
15: generate k ∼ Uni f orm(1 : K )

16: return ξ(k)

The sequential simulation of a Boolean model hitting a finite set using a particle
filter is detailed in Algorithm 2.

3.3 Summary

Starting from the results obtained in the previous sections, a sequential algorithm is
proposed to simulate a Boolean model X in the domain D, subject to the foreground
condition F ⊂ X and the background condition B∩X = ∅. This conditional Boolean
model XD(B, F) is split into two independent Boolean models. The first is a Boolean
model XD(B ∪ F, ∅) that avoids all observation points (see the top of Fig. 6). The
second is a conditional Boolean model XF (B, F) that contains all points in F and
avoids all background points (see middle and bottom of Fig. 6). They are simulated
independently and then recombined (Algorithm 3). Thus the approach relies on the
simulation of a Boolean model avoiding B ∪ F (Algorithm 1) and on the simulation
of a conditional Boolean model on the finite set F (Algorithm 2). The concatena-
tion of these two algorithms yields the general conditional simulation algorithm (see
Algorithm 3).

Algorithm 3 Sequential simulation of a conditional Boolean model XD(B, F)

Require: Domain D
Require: Two subsets B and F of D
1: generate XD(B ∪ C, ∅) (cf. Algorithm 1)
2: generate XF (B, F) (cf. Algorithm 2)
3: return XD(B ∪ C, ∅) ∪ XF (B, F)
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Fig. 6 Summary of the conditional simulation algorithm using its representation in the parameter space.
At first, the objects avoiding all conditioning data points are generated (top). Then all objects covering c1
are generated (center). The remaining objects covering c2 are finally generated (bottom)

4 Example

This section provides an illustration of the proposed sequential algorithm. The prob-
lem addressed is the simulation of a two-dimensional Boolean model of discs in a
rectangular domain. The Boolean model is stationary, with Poisson intensity θ , and
the discs have their radii exponentially distributed,
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f (r) = a exp(−ar),

such that the mean disc radius is 1/a, and the mean disc area is 2π/a2. The algorithm
proposed in the previous section rests on non-conditional simulations of Boolean
models in the given domain and on each foreground conditioning data point. These
simulations are then thinned and combined to generate the final conditional simulation.

Consider first the case of the simulation domain. When the objects are statistically
isotropic, the edge effects caused by the border of the simulation domain are more
easily controlled in circular domains than rectangular domains. For that reason, the
simulation is performed in the disc D0 circumscribed to the rectangular domain and
then restricted to it. This disc is supposed to be centered at the origin, and its radius
is denoted by r0. To perform an exact simulation of the Boolean model in D0, the
general algorithm developed in Lantuéjoul (2013) can be applied. Appendix C gives
the proofs in a slightly more general context. In a nutshell, XD0 is a Boolean model
with intensity function

θD0(s) = θ exp
(−a(|s| − r0)+

)
s ∈ R

2,

where u+ = max(u, 0). Moreover, the number of discs hitting D0 is Poisson-
distributed, with mean value

ϑ(D0) = θπ

[
r20 + 2r0

1

a
+ 2

a2

]
·

Regarding the object radii, their distribution is given by

fD0(r) =
r20 g1,a(r) + 2r0

1

a
g2,a(r) + 2

a2
g3,a(r)

r20 + 2r0
1

a
+ 2

a2

r > 0,

where gα,a is the gamma distribution, with parameter α and rate a. Thus, fD0 can
be simulated as a mixture of 3 gamma distributions. Finally, any object of radius r is
uniformly located on the disc of radius r0 + r centered at the origin.

Consider next the case of a conditioning point in the foreground, for example s.
This can be seen as a circular simulation domain with a radius of 0. Thus, the same
algorithm used before applies here, with r0 = 0. In particular, the number of discs
containing s is Poisson-distributed, with mean 2θπ/a2. Moreover, the distribution of
the radii of the discs containing the point s is not exponential but rather gamma, with
parameter 3 and rate a

f{s}(r) = a3

2
exp(−ar) r2 r > 0.

The difference between f and f{s} is important. Indeed, f{s} can be simulated as the
sum of three independent variables distributed like f . It follows that the mean radius
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Fig. 7 Conditional simulationof aBooleanmodel of discswith exponential radii. Top left: a non-conditional
simulation. Top right: 100 conditioning data points located at random. Middle left: a simulation of the
avoiding Boolean model. Middle right: a simulation of the hitting Boolean model. Bottom left: a simulation
of the conditional Boolean model. Bottom right: estimation of the probability of presence in the foreground
based on 500 conditional simulations

of f{s} is 3 times that of f . Regarding the corresponding mean areas, the ratio is equal
to 6. This corroborates the idea that the more extended a disc is, the greater the chance
it has to contain a fixed point.

The results of this algorithm are presented in Fig. 7. The considered Boolean model
has a Poisson intensity of 10, and the rate of the exponential distribution is 7.22, which
warrants an average background proportion of 30%. The top left image shows a non-
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conditional simulation in an 8 × 6 rectangular domain. From this simulation, 100
randomly scattered points are selected to serve as conditioning data points. Those
points are shown in the top right image in blue or in orange, depending on whether
they belong respectively to the foreground or the background. Subject to these obser-
vations, the middle left and middle right images are the simulations XD(B ∪ F, ∅)

and XF (B, F), respectively (using 200 particles). Their union yields the conditional
simulation of the bottom left image. Finally, an estimate of the probability of presence
of each point in the foreground, based on 500 conditional simulations, is represented
in the bottom right image.

5 Discussion and Conclusions

In this paper, we propose a sequential algorithm to simulate a Boolean model subject
to point observations. To design this algorithm, two nonstandard properties of the
general Boolean model have been used: (i) the decomposition property, which states
that any conditional Boolean model can be seen as the union of two independent
models, namely a Boolean model avoiding all observations and a conditional Boolean
model defined on the foreground observations; and (ii) the stability property which
states that a Boolean model that avoids background observations is still a Boolean
model, and its simulation can be derived by thinning a non-conditional model.

This algorithm is versatile, as it applies to Boolean models, stationary or not, that
are defined in Euclidean spaces or spheres of any dimensionality. The shapes and sizes
of the objects can be arbitrary.

A Boolean model can be nonstationary in two ways: the intensity of the Poisson
process is not constant, or (and) the features of the objects vary through space. From a
formal standpoint, it is helpful to specify the distribution of the objects by their hitting
functional. From a practical standpoint, it is more convenient to summarize each object
by a set of parameters and to consider the corresponding distribution. In that sense, an
object can be seen as a randompoint in a parameter space. This approach is particularly
suited to the Boolean model because its population of objects can also be defined as
a Poisson process on the family of the compact subsets in the workspace (Matheron
1975). Hence, the simulation of a Boolean model boils down to the simulation of a
Poisson process defined in the parameter space. In the nonstationary case, simulations
of Poisson processes are often feasible using acceptance/rejection algorithms. Note
that the simulation of a stationary Boolean model, conditional or not, in a limited
domain of a given workspace generally amounts to that of a nonstationary Boolean
model. Indeed, remotely located objects have less chance to hit the simulation domain.
If they do, they must be more extended. The case of a stationary Boolean model of
discs presented in Sect. 4 is a typical example.

This algorithm is also efficient because the decomposition property enables us to
target the conditioning effort on the random objects hitting the foreground observa-
tions. This component is achieved using a particle filter that sequentially assimilates the
observed foreground points one by one. The particle filter thus performs the simulation
in a finite number of steps, which is a real advantage over the standard Markov chain
Monte Carlo algorithm for which the choice of the burn-in period and the assessment
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of convergence are delicate. The counterpart is that one has to simulate the evolution of
the so-called particles, which are Markov chains of Boolean models, with resampling
steps to satisfy the constraints.

This algorithm is also quite fast. To give an idea of the order of magnitude of the
speed, each of the conditional simulations presented is obtained in a few seconds on the
authors’ laptops, while minutes are required when using the birth and death algorithm.
It turns out that the running time is practically proportional to the number of particles.
It also depends on the number of observed foreground points, but not in a purely linear
way. The processing time of a conditioning point in the foreground increases with its
rank, as all constraints previously assimilated have to be considered. Moreover, there
is no clear evidence that the order relation affects the running time.

The number of particles required to fulfill the constraints is a pending issue; they
should be numerous enough to model the conditional distribution, but considering
too large a number of them slows down the algorithm. In the example presented
in Fig. 7 (Sect. 4), 100 observations are uniformly located over the domain. Fig. 8
shows the opposite situation, which is more representative of operational conditions,
with 100 observations along two lines. The random objects can be intersected by
zero, one or two lines. In both examples, 200 particles are sufficient to honor the
constraints, although the geometrical configuration of the constraints differs greatly.
In practice, the filter is used only for assimilating the points in the foreground; thus,
the particles are usually made of a few objects that cover these points (see the middle
right images in Figs. 7 and 8). Finally, Fig. 9 shows the estimates of the probability
of presence in the foreground based on an increasing number of lines of observations.
These estimates are computed as the average of 500 conditional simulations, where
each is one conditioned using a filter with 200 particles. At this stage, it should be
mentioned that the numbers of particles to produce the conditional simulations of
Figs. 7 and 8 are relatively small because the conditioning data were extracting from
unconditional simulations, so that the compatibility between the Boolean model and
the conditioning data is automatically ensured. This is not always what happens in
current practice. There are situations where the data are not perfectly compatible with
the model considered; then no number of particles, however it may be, will allow the
full respect of the conditioning. It is likely that the number of particles can be used
as a criterion to quantify the adequacy between the model and the data, but this point
deserves more investigation.

A recurring situation observed by the particle filtering practitioners is the weight
degeneracy. After a number of steps, most weights become negligible in compari-
son with a few dominant ones. As a consequence, a limited number of particles are
replicated, to the detriment of all others that are left over. This results in a dramatic
reduction in the statistical fluctuations that one should expect. To alleviate this prob-
lem, powerful importance sampling techniques have been developed (Doucet et al.
2001; Del Moral 2004; Kroese et al. 2011). Instead of being generated from a prior
distribution, particles are drawn from an auxiliary distribution that is better fitted to
the observation to be assimilated. This change of distribution is corrected afterwards
via so-called importance weights. Consider for example the Boolean model of discs
presented in Sect. 4, and suppose that the point to be assimilated is closely surrounded
by background conditioning points. If too many large radii are generated, then any
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Fig. 8 Conditional simulationof aBooleanmodel of discswith exponential radii. Top left: a non-conditional
simulation. Top right: 100 conditioning data points arranged on lines. Middle left: a simulation of the
avoiding Boolean model. Middle right: a simulation of the hitting Boolean model. Bottom left: a simulation
of the conditional Boolean model. Bottom right: estimation of the probability of presence in the foreground
based on 500 conditional simulations

disc covering the point is likely to cover background points, and thus to be rejected.
Accordingly, only a few discs are accepted, from which it follows that most weights
are zero, and most particles vanish. A solution to bypass this problem is to gener-
ate smaller discs (typically by replacing the exponential distribution of the radii by a
gamma distribution with parameter less than 1). The importance weights compensate
for the reduction in size of the discs. Also, in this example, the standard approach
assigns values of 1 or 0 to the un-normalized weights, the value 1 or 0 depending on
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Fig. 9 Estimation of the probability of presence in the foreground starting from 100 observations over
2 lines (left), 200 observations across 4 lines (middle), and 300 observations across 6 lines (right). Each
estimation is built using 500 conditional simulations

whether or not the point to be assimilated is covered by a disc. Another advantage of
the importance sampling approach is that the un-normalized weights can take inter-
mediary values between 0 and 1, which contributes to the survival of particles. In both
examples, the conditioning pattern is drawn from a non-conditional simulation, which
ensures the consistency between the model and the conditions. As mentioned by a
reviewer, if the data configuration cannot be reproduced by the model, weights would
degenerate whatever the resampling trick used. Linking the weight distribution as a
measure of the model adequacy to the observations could be further investigated, but
it was not consider in this work.

In the geosciences, realizations of three-dimensional stochastic models can be used
as inputs for modeling the reactive transport in porous media. These models should
be able to capture the heterogeneity of an aquifer. When the reservoir is an aggregate
of geological objects, such as sand bodies or shale lenses, hierarchical models are
commonly used. A discrete model first defines a partition; then each component is
assigned petrophysical properties.

The discrete model often has more than two facies, which should preclude the
use of a Boolean model in which the foreground is the union of independent random
objects and the background is its complement. However, different Boolean models
can be combined to design more complex models, in the same vein as a plurigaussian
random field (Armstrong et al. 2003); independent Boolean models are coded into
a categorical variable using a logical rule. To achieve a conditional simulation of
such a pluriboolean random field, the point observations are first converted into point
constraints on the latent Boolean models; then each Boolean model is independently
simulated subject to its own local conditions; finally, the conditional Boolean models
are recombined according to the logical rule. Note that if the multifacies model is
nonstationary, then the latent Boolean models are also nonstationary.

In many situations, the objects in the reservoir are very large compared to the
simulation domain. Typical cases are meandriform channels. This raises the question
of how to design a Boolean model of channels. A possible approach is to start with a
Boolean model of segments. Then, each segment is used as a domain for the definition
of a Gaussian process with a smooth covariance function. Finally, each Gaussian
trajectory is dilated by a disc to assign it a nonzero width. It can be easily shown
that the union of all dilated trajectories is a Boolean model. A similar approach for
modeling channels was used in (Walgenwitz et al. 2015; Biver and Naumov 2011).
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In both cases, the simulation of the stochastic model used to represent the hetero-
geneity within the reservoir boils down to that of Boolean models. An efficient and
versatile algorithm for simulating a conditional Boolean model should facilitate the
use of hierarchical models that are based on plain Boolean models.

In this paper, the conditioning data consist of point observations. However, there
often exist a wealth of data provided by seismic information, history matching, well
tests, and soon. In contrast to the observations considered in this paper, that information
is not local. It is not certain that an algorithm such as particle filtering makes their
integration straightforward. At a minimum, such information can be considered when
performing the statistical inference of the Boolean parameters.

It frequently happens that the objects of a reservoir mutually interact (attraction or
repulsion). In such a case, the object-based model must be built on a point process
that is not Poisson (for example, a Gibbs or hard core process). Approximate formulas
have been proposed in (Allard et al. 2006) in the case of Strauss processes (one
of the simplest Gibbs processes) with conditional simulations performed iteratively.
As the specific properties of the Poisson process have been exploited to design the
proposed algorithm, a direct generalization does not seem possible for a number of
point processes. An exception may be the Cox process (a Poisson process with a
random intensity function). This point process probably gives rise to the simplest
object-based models, where the objects are not independently located. However, the
conditional simulation algorithm is not straightforward. Further work is still needed.

Acknowledgements The first author acknowledges the financial support of the Chilean National Agency
for Research and Development (ANID)/Scholarship Program/DOCTORADO BECAS CHILE/2018-
72190309. The authors warmly thank the three referees for their careful reading of the original manuscript,
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Appendix A: Proof of Proposition 1

Let K be a compact subset of R
d . The hitting process XV is disjoint from K if and

only if each object of X either avoids V or hits V but not K ; this takes place with
probability Qs(V ) + Qs(K ) − Qs(K ∪ V ). Similarly, the avoiding process XV is
disjoint from K if and only if each object of X either hits V or avoids K ∪ V ; this
takes place with probability Ts(V )+Qs(K ∪V ). The avoiding functionals of XV and
XV are explicitly calculated by first considering the restriction of the Poisson process
P to a compact domain D containing V , and then by extending D to R

d . Denoting by
θ(D) the mean number of Poisson points in D, we obtain

QXV (K ) = lim
D−→Rd

∞∑

n=0

exp
(−θ(D)

)θn(D)

n!
[∫

D

θ(s)

θ(D)

[
Qs(V ) + Qs(K ) − Qs(K ∪ V )

]
ds

]n
,
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QXV (K ) = lim
D−→Rd

∞∑

n=0

exp
(−θ(D)

)θn(D)

n!
[∫

D

θ(s)

θ(D)

[
Ts(V ) + Qs(V ∪ K )

]
ds

]n
.

Once all calculations have been completed, this gives

QXV (K ) = exp

(
−

∫

Rd
θ(s) TsV )

[
1 − Qs(K ) − Qs(V ∪ K )

Ts(V )

]
ds

)

= QX (V ) QX (K )

QX (V ∪ K )
,

QXV (K ) = exp

(
−

∫

Rd
θ(s) Qs(V )

[
1 − Qs(V ∪ K )

Qs(V )

]
ds

)
= QX (V ∪ K )

QX (V )
.

Now, note that

1 − Qs(K ) − Qs(V ∪ K )

Ts(V )
= P{As ∩ K �= ∅ | As ∩ V �= ∅}

1 − Qs(V ∪ K )

Qs(V )
= P{As ∩ K �= ∅ | As ∩ V = ∅}

are hitting functionals. It follows that XV and XV are Boolean models with intensity
functions θ(s) Ts(V ) and θ(s) Qs(V ), respectively. The hitting functionals of their
objects are given by the two formulas above. Moreover, note that

QXV (K ) QXV (K ) = QX (V ) QX (K )

QX (V ∪ K )

QX (V ∪ K )

QX (V )
= QX (K ) .

Consequently, XV and XV are independent, and their union is equal to X .

Appendix B: Avoiding Functional of X (B, F)

Recall that this avoiding functional is defined as

QX (B,F)(K ) = P{X ∩ K = ∅ | B ∩ X = ∅& F ⊂ X},

or equivalently

QX (B,F)(K ) = P{X ∩ (B ∪ K ) = ∅& F ⊂ X}
P{X ∩ B = ∅& F ⊂ X} := N

D
·

To perform the calculation of the denominator, it is convenient to express the proba-
bility as the expectation of an indicator function

D = E{1B∩X=∅ 1F⊂X }.
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Now, the indicator function of F ⊂ X is expanded as

D = E

{
1B∩X=∅

∏

s∈F
1s∈X

}
= E

{
1B∩X=∅

∏

s∈F
(1 − 1s /∈X )

}

= E

{
1B∩X=∅

∑

C⊂F

(−1)|C|1C∩X=∅

}
=

∑

C⊂F

(−1)|C|E
{
1(B∪C)∩X=∅

}

=
∑

C⊂F

(−1)|C|P{(B ∪ C) ∩ X = ∅} =
∑

C⊂F

(−1)|C|QX (B ∪ C).

The calculation of the numerator is now straightforward, as it can be deduced from
the formula of the denominator by replacing B with K ∪ B

N =
∑

C⊂F

(−1)|C|QX (K ∪ B ∪ C).

We finally obtain

QX (B,F)(K ) =
∑

C⊂F (−1)|C|QX (K ∪ B ∪ C)
∑

C⊂F (−1)|C|QX (B ∪ C)
·

which is precisely Eq. (7). It should be pointed out that this formula does not depend
on the properties of the Boolean model. It is valid regardless of the random closed set
considered.

Appendix C: Exact Simulation of a Stationary Boolean Model of Discs

The domain of simulation D is assumed to be convex and bounded. According to
Proposition 1, XD is a nonstationary Boolean model. Its Poisson intensity function is

θD(s) = θ
[
1 − F

(
d(s, D)

)]
s ∈ R

2

and the distribution of the disc radius at point s is

fD(r | s) =
⎧
⎨

⎩
f (r) if s ∈ D ;

f (r)

1 − F[d(s, D)] if r > d(s, D) > 0 ,

where θ and f are respectively the Poisson intensity and the probability density func-
tion of the radii of the stationary Boolean model X (the cumulative pdf of f is denoted
by F), and d(·, D) is the distance to the convex set D. These expressions derive from
the simple fact that a disc of radius r implanted at s hits D if and only if r exceeds
d(s, D).
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t

D

Fig. 10 Illustration of Steiner’s formula. The length of the curve surrounding at distance t the convex
domain D with finite perimeter p(D) is equal to p(D) + 2π t

To simulate XD , the number of discs hitting the domain is first drawn from a Poisson
variable with parameter

ϑ(D) =
∫

R2
θD(s) ds.

This integral can be explicitly calculated using the change of variable t = d(s, D).
The case t = 0 corresponds to the points of D, so that its contribution to ϑ(D) is
θ a(D), where a(D) is the area of D. The case t > 0 corresponds to the points outside
D. As D is convex, the length of the curve at distance t from D is equal to p(D)+2π t ,
where p(D) is the perimeter of D (this is a simple application of Steiner’s formula
illustrated in Fig. 10). Thus its contribution to ϑ(D) is θ [p(D) + 2π t] [1 − F(t)]. It
follows that

ϑ(D) = θ

[
a(D) +

∫ ∞

0
(p(D) + 2π t)

∫ ∞

t
f (u) du dt

]

= θ
[
a(D) + p(D)m1 + π m2

]
, (12)

where m1 and m2 are the first two moments of f . Discarding the case where the
variance of f is infinite (in this case XD = D), ϑ(D) is finite. Then, XD is the union
of a Poisson number of objects, which implies that it can be exactly simulated.

Then each disc is simulated independently with its center drawn from θD(s)/ϑ(D),
and conditionally to its location, its radius is drawn from fD(r |s). A simple way to
simulate the location of a disc hitting D is to proceed by acceptance-rejection using
an integrable, radially symmetric auxiliary function (for example, 1 − F

(
d(s, D0)

)
,

where D0 is a disc that encloses D).
Alternatively, it is possible to first simulate the radius of the objects, and then their

location. To do this, the radius distribution to consider is

fD(r) :=
∫

R2
fD(s) fD(r | s) ds = f (r)

a(D) + p(D)r + πr2

a(D) + p(D)m1 + πm2
,
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which can be expressed as a mixture of weighted distributions

fD0(r) = w0 f0(r) + w1 f1(r) + w2 f2(r)

with

fi (r) = r i f (r)

mi
i = 0, 1, 2

and the wi are respectively proportional to a(D), p(D)m1, and π m2. Once a radius
r has been generated, then the center of the disc is uniformly located in the domain
{s ∈ R

2 : d(s, D) < r}.
Similar results hold in more than two dimensions. Consider for instance the case

of a bounded, convex domain D in R
3. There are three important features of D to

consider, namely its volume v(D), the surface area of its boundary s(D), and the
integral of its mean curvature n(D) (Schneider and Weil 2008). The expressions for
θD(s) and fD(r | s) are exactly the same. On the other hand, it can be shown that

ϑ(D) = θ
[
v(D) + s(D)m1 + n(D)m2 + ω3m3

]
,

where the m′
i s are the first three moments of f , and ω3 = 4π/3 is the volume of

the unit ball in R
3. ϑ(D) is finite if and only if f admits a finite moment of order 3.

Regarding the distribution of the objects of XD , we have

fD(r) = f (r)
v(D) + s(D) r + n(D) r2 + ω3 r3

v(D) + s(D)m1 + n(D)m2 + ω3 m3
,

which canbe expressed as amixture of 4 distributions. In practice, it frequently happens
that D s a rectangular parallelepiped. Denoting its edge lengths by a, b and c, we have
v(D) = abc, s(D) = 2(ab + ac + bc) and n(D) = π(a + b + c).
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