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Abstract 
 
Linear geostatistics, i.e. geostatistics based on the variogram, provide methods for estimating a 
spatially distributed abundance with its estimation variance. However, in complex situations, 
such as combining the data collected during acoustic surveys (i.e. acoustic backscattering, fish 
length and fish age), these methods are limited in their ability to combine the different sources 
of variability. As an alternative, geostatistical conditional simulations, which can reproduce the 
spatial variability of a variable, are particularly helpful in that they solve the latter problem. 
In this paper, we investigate the uncertainty of Scottish herring acoustic survey estimates using a 
specific multivariate model. This includes highly skewed distributions for the acoustic 
backscatter data and incorporates relations between depth, mean fish length and proportion at 
age. Conditional simulations, i.e. simulations which honour the data values known at the data 
points, are used to generate multiple realisations for acoustic backscatter, mean fish length and 
proportion at age. These are combined to produce multiple realisations of herring density over 
the sampled domain. All realisations are then used to provide the error structure for the global 
abundance estimate at age. The method is used to assess the uncertainty from acoustic surveys 
on herring in the example year of 2003, and more generally for each year during the periods 
1989 - 1994 and 2001 - 2003 to track significant variations of abundance over the time series. 
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1. Introduction 

Scientific surveys, principally either trawl surveys or acoustic surveys, are often performed in 
order to estimate abundances of either demersal or pelagic fish populations respectively 
(Gunderson 1993). This estimation requires the combination of spatially located data. An 
important point is the uncertainty of this estimation, at least that part of the uncertainty due to 
the spatial coverage of the survey (e.g. areas between trawl stations or acoustic transects). As 
the variables of interest are often spatially autocorrelated, geostatistics have been recognized as 
providing suitable methods to estimate fish abundance from survey data (e.g. Petitgas, 1993; 
Rivoirard et al., 2000). This technique allows for: 

- the capture of the spatial structure of fish densities (through the variogram, covariogram, 
and either with or without a trend or drift) and to fit an appropriate structural model: this is the 
geostatistical structural analysis; 

- the estimation of global abundance with its estimation variance: this is the variance of 
the error of estimation, and can be computed from the structural model when the estimator is an 
arithmetic or weighted average, without preferential sampling; 
_____________ 
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- mapping by interpolation using kriging;  
- simulations, conditional on the data (conditional simulations are simulations which 

honour the data values, by contrast with non-conditional simulations which reproduce the 
geostatistical model but do not honour data). 

In many cases, the estimation variance of the abundance can be computed in a 
straightforward manner from a single variogram model and then be used to summarize the 
spatial uncertainty of the abundance. In more complex cases however, geostatistical simulations 
are needed to provide the uncertainty. Simulations allow the reproduction of the spatial 
variability of the variable, and also the simulation of errors and the computation of estimation 
variances. They are particularly helpful to compute estimation variances or probability when 
different sources of variability must be combined, e.g. acoustic backscatter together with 
biological data in acoustic surveys.  

To date there have only been a few examples where overall survey variability has been 
evaluated. Measures of uncertainty have been based on sampling error (Rose et al., 2000) and 
survey timing, detectability, species composition, target strength, calibration coefficients and 
missing strata (O’Driscol, 2004). Rare are the cases where variances of abundance estimates are 
evaluated for acoustic surveys (e.g. Demer 2004). Gimona and Fernandes (2003) have attempted 
an approach to build geostatistical conditional simulations on Scottish herring (Clupea 
harengus), but the simple approach they used was not able to deal with the specific distribution 
of acoustic values, with many zeroes and a few high values, and resulted in bias. An alternative, 
more considered approach is proposed in this paper, again using the example of the Scottish 
component of the North Sea herring acoustic survey (Bailey et al., 1998). 

 
2. Material and methods 
2.1 Data 
Acoustic surveys have been carried out in the northern North Sea (western half of ICES division 
IVa) in midsummer of each year since 1979 on the pre-spawning concentration of autumn 
spawning herring. The investigation here used data collected from nine years by the research 
vessel Scotia around Orkney and Shetland (1989-1994 and 2001-2003). This survey is part of a 
larger international survey for North Sea herring (Bailey et al., 1998). The result of the larger 
survey, is used in the assessment process, which ultimately aims to determine the total biomass, 
total numbers and numbers at age of the North Sea herring stock (Simmonds, 1996). 

The Scottish survey is made up of transect lines that cover a domain defined according to 
ICES rectangles (Figure 1a). Parallel transect spacing is variable depending on the historically 
perceived levels of abundance of the area being sampled: 30, 15 or 7.5 nautical miles (nmi) are 
chosen. Acoustic backscatter data were recorded using a Simrad EK500 echosounder operating 
at 38 kHz. The echosounder system was calibrated on each survey according to recognised 
procedures (Foote et al. 1987). Trawl hauls were taken regularly to assist in the identification of 
the acoustic backscatter as detected as echo traces by the echosounder and to collect biological 
data such as fish length and fish age (Figure 1b and 1c). Echo traces were allocated to the 
appropriate fish species by visual scrutiny of the echogram (Reid et al., 1998). Outputs of the 
scrutinised acoustic backscatter data were values of the nautical area backscattering scattering 
coefficient (equivalent to sA/4π, in m².nmi-²) attributed to herring for an equivalent distance 
sample unit (EDSU) of 2.5 nmi. 
 
2.2 Global geostatistical model 
The simulation was based on a global geostatistical model combining acoustic backscatter 
(recorded along transects), mean length and proportions at age (measured at trawl stations), that 
were developed for the Scottish herring using the data from the surveys 1989-1994 (Rivoirard et 
al., 2000). In the present paper the model has been extended to include several more recent 
years. The essential characteristics of this model are now recalled. In this model, the mean 
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length increased with bottom depth and was mapped using kriging with depth as external drift. 
Moreover, as the spatial distribution of fish length is rather stable over years, the map of mean 
length for a given year was improved by using the length data from the other available years 
within an adequate three-dimensional model, where interannual variability was incorporated as 
a time component of the model (a nugget). Although the spatial distribution of age varied from 
year to year, it was not independent from that of length. For a given year, the cumulative 
proportion at age was closely related to the mean length through a logistic relation, and was 
mapped by kriging using this logistic regression on mean length as external drift and a residual 
structure with no spatial discontinuity. Maps of proportions at age were then obtained by 
differences between the maps of cumulative proportions. The acoustic backscatter was mapped 
by kriging. A map of the number of individuals was obtained by combining the acoustic map 
and the length map, using the target strength to length relationship for North Sea herring (ICES 
2004). Finally, this is disaggregated into maps of numbers at age using the maps of proportions 
at age.  

In summary, maps of acoustic backscatter, mean fish length (dependent on depth), and 
proportions at ages (dependent on mean fish length) were combined in order to provide the total 
abundance and abundances at age. In the present paper, repeated conditional simulations were 
used instead of kriging: this gave repeated simulations of abundances, conditional on the 
different types of data, and estimates of uncertainty of the estimated abundances. Kriged 
estimates of the different variables (acoustic backscatter, fish length and proportions at age) 
were also obtained to verify that the average of the simulations was close to the kriged 
estimates. We will now consider the method used for the conditional simulations, and 
afterwards the particular case of the acoustic backscatter. 
 
2.3 Conditional simulation 
A conditional geostatistical simulation of a Gaussian random function model can be classically 
done as follows (Chiles and Delfiner, 1999). First, a non-conditional simulation of the random 
function model Z(x) is performed. This is simply a realization of this random function, say 
ZNCS(x), which reproduces the variability of the model. The turning bands method has been 
used to generate the non conditional simulation. Then the simulation must be conditioned, in 
order to honour the data values. Conditioning a simulation, i.e. making a conditional simulation 
from a non conditional simulation, can be done relatively easily using kriging in the Gaussian 
case. Let Z*(x) denote the kriged estimator of Z(x) at any point x. One can write: 

( ) *( ) [ ( ) *( )]Z x Z x Z x Z x= + −            true value = kriged estimator + kriging error (1) 
The kriging error is unknown since Z(x) is not known. However, in the Gaussian case, this error 
is spatially independent from the kriged process. The idea is to mimic such an error by using a 
non conditional simulation, known everywhere: 

- first, generate a non conditional simulation ZNCS(x), 
- krige it from its values at the data locations only: ZNCS(x)*,  
- obtain the simulated error = simulated value – kriged value = ZNCS(x) - ZNCS(x)*, 
- add this error to the kriging of the real variable: 

( ) *( ) [ ( ) *( )]

( ) ( ) [ ( ) ( )]*
CS

CS

NCS NCS

NCS NCSZ x

Z x Z x Z x Z x

Z x Z x Z x

= + −
= + −

 (2) 

As kriging is an exact interpolator (reproducing the data value at a data point), this is indeed 
a conditional simulation: by construction it reproduces the variability, and goes through the data 
points. Thus conditioning a Gaussian simulation is straightforward once the values of the 
Gaussian variable are known at the data points. The Gaussian assumption is fundamental. Very 
often the Gaussian assumption is not acceptable on the original variable (e.g. a skewed 
histogram), but is acceptable after a transformation, or anamorphosis: thus the conditional 
simulation is made on the Gaussian variable, and then backtransformed to have a simulation of 
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the original variable. However in the case of kriging with external drift, the Gaussian 
conditional simulation method still holds, with the Gaussian assumption reduced to the residual 
from the drift.  

We have considered that the Gaussian conditional simulation technique could be applied with 
no transformation in the case of mean fish length and cumulative proportion variables, since 
their distribution is close to Gaussian and we work implicitly with the residuals from drifts. 
However, the method is not sufficient for the acoustic variable: because of the skewness of the 
distribution, a transformation is necessary, but the values cannot be directly transformed into 
Gaussian values because of the high proportion of zeroes. 
 
2.4 Simulation of the acoustic variable 
We suppose that the acoustic variable, say Z(x), conforms to a Gaussian anamorphosed model, 
i.e. it stems from a standard Gaussian random function Y(x) using a Gaussian anamorphosis Φ: 
Z(x) = Φ(Y(x)). Knowing the anamorphosis is equivalent to knowing the histogram of Z, and 
we have F(z) = P(Z(x) < z) = P(Y(x) < y) = G(y). The anamorphosis allows for the association 
of any value Y the value Z with the same cumulative probability. The reverse holds if the 
anamorphosis can be considered to be inverted. This is generally the case when Z takes positive 
values with no spikes. However, this is not the case for the zeroes, when the histogram of values 
of Z presents a spike of zeroes. For instance, if the values of Z have 50% zeroes, any negative 
value for the standard Gaussian Y can be associated to a zero value of Z. More generally, if the 
values of Z have a proportion of zeroes equal to p0, any value of Y lower than yc can be 
associated with a zero value of Z, where the threshold yc is determined by the proportion of 
zeroes:  p0 = P(Z = 0) = P(Y < yc) = G(yc) 

Hence it is not possible to transform directly the original zero data values of Z into Gaussian 
values. Since the Gaussian values of Y at data points are not all determined, the above 
conditional simulation method cannot be directly applied, and moreover the variogram of the 
Gaussian variable to be simulated cannot be directly computed. So some adaptations are needed. 

First the values of Y at data points where Z is zero should be informed. Within the above 
Gaussian model, the Y values at all data points should conform to the variogram of Y (we will 
see later how to determine this variogram). A Gibbs sampler (Geman and Geman, 1984) was 
used to simulate iteratively the Y values at data points where Z is zero, conditional on their 
being lower than yc and on the Y values at the other data points (Freulon, 1992; Freulon 1994; 
Lantuejoul, 2002). Once Y are informed at all data points, the classical conditional simulation 
method is applicable. Finally, a backtransformation of Φ is applied to obtain the conditional 
simulation of the raw variable. 

Secondly, as seen above, the variogram of the Gaussian variable Y to be simulated cannot be 
computed directly because the values of Y cannot be determined directly at data points where Z 
is zero. However the variogram of any transformation of the Gaussian variable is a function of 
the variogram of Y. This can be used to determine indirectly the variogram of Y from the 
variogram of a transformed variable known at all data points. For this we have considered the 
“lower-cut” Gaussian variable: 

.1 .1Y yc Y ycY yc Y+
< >= +  (3) 

This transformed variable, equal to Y where Z is positive and to the continuous limit yc where Z 
is zero, is known at all data points.  
 
3. Results 
The different simulation steps are now presented in details for one specific year (2003). We will 
begin with the acoustic backscatter. This variable was characterised by a highly skewed 
distribution with a large number of small values, about 30% zero values, and only a few large 
values (Table 1). The Gaussian anamorphosis function was determined by plotting the raw data 
values against normally distributed values (Fig.2). This function was fitted using a spline 
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function. It was used at the end of the simulation process for the back-transformation of the 
Gaussian simulation into a raw realisation. 

The values of the Gaussian variable were not known at data points where the acoustic 
backscatter is zero, but the values of the lower-cut Gaussian variable were known at all data 
points. The experimental variogram of the lower-cut Gaussian is presented in Figure 3. It was 
indirectly fitted by considering that the Gaussian variable had a nested structure with a nugget of 
0.225, a spherical component of 0.375 with a range of 12 nmi and another spherical component 
of 0.425 with a range of 50 nmi. The models fitted for the others years also had nested structures 
with a nugget component and, most of the time, two spherical components; a short range one 
and a long range one (Table 2). 

The simulation process of acoustic backscatter was developed in two parts. First the Gibbs 
sampling was used to simulate values of the Gaussian variable at the data points where the 
acoustic backscatter was zero (Fig 4). Then, using the classical conditional simulation method, a 
realisation of the Gaussian variable was produced (Fig 5a), which was finally turned into a raw 
acoustic backscatter realisation (Fig 5b). 

Fish mean length and fish proportion above age were simulated more easily, as these were 
variables that were close to being Gaussian. The simulation process was a classical conditional 
simulation, with respect to the geostatistical model developed for the two variables, i.e. a 
kriging with depth as external drift with a time component for mean length residuals, and 
kriging with a function of kriged mean length as external drift for proportion above age 
residuals. A realisation of mean length is presented in Figure 6 and realisations of proportion 
above age are presented in Figures 7a and 7b. Then, a realisation at age was obtained as the 
difference between the realisations of proportions above successive ages (Fig 7c). 

Finally, 200 conditional simulations of acoustic backscatter, mean length and proportions at 
age were produced for each year of the studied period. One can check that the conditional 
simulations respect the statistics of the data, as well as the means of the kriging estimates (Table 
3). Total abundance was obtained by combining the first two simulated variables, whereas the 
abundances at age were obtained by disaggregating the total abundance according to simulated 
proportions at age. The histograms of numbers at age and total number obtained from the 
simulations are presented for year 2003 in Figure 8. The error distribution is rather symmetric 
and the kriging estimate lies within the distribution. The main objective of the simulation is to 
determine the error distribution and the uncertainty associated with the variables (Table 4). The 
coefficients of variation of the abundances at age (standard deviation of the simulated 
abundances divided by their mean) ranged from 5.9% to 46.2%. High CVs were found for 
extreme ages (age 1, age 8) when numbers were low. Otherwise CVs were mostly around 15%. 
The CVs of the total number were lower than CVs of numbers at age, around 10%. 
 
4. Discussion 
Concerning the methodology, Gibbs sampler has to be used with care. Indeed, it has been 
observed that the p.d.f. of the simulated data tends to a conditional Gaussian distribution as the 
number of iterations becomes very large. However, the rate of convergence toward equilibrium 
is not well known (Galli and Gao, 2001; Lantuejoul, 2002). In our case, the number of iterations 
was fixed to 1000. The resulting p.d.f. of the simulated values was checked to be Gaussian and 
the variogram was checked to be fitted by the model used for the simulation. 

The interest of such results is that one can follow the numbers per age classes in time or 
cohorts with their associated uncertainty respectively in figures 9 and 10. Thus, Scottish North 
Sea herring decrease in total number from 1989 to 1994, as the distributions for the different 
years slightly overlap and their means show a constant decrease. Years 2001 to 2003 present a 
significantly higher level of abundance than years 1989 to 1994. However the increase of 
abundance from 2001 to 2003 may not be significant, as the distributions of years 2001 and 
2003 overlap despite different means. In addition, age 2 has a higher abundance than age 1 (Fig. 
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10). The consistently higher CV’s associated with age 1 abundances verify that this survey is 
not precise for this age group. This is not surprising given that younger fish tend to occur closer 
inshore, where the survey does not sample so well and younger fish often school at the surface 
where the acoustic apparatus cannot detect them. Age 2 might be more representative of the 
recruitment strength than age 1. Thus, the studied period presents two different levels of 
recruitment; weak in majority for the first period and higher for the last years with two strong 
year classes (Fig. 9). A follow-up of cohort with the associated uncertainties is also interesting 
in order to clearly identify the strength of the different cohorts and detect change in time. 
However, a complete time series would be needed to follow these changes properly. 

This methodology appears to be very interesting to evaluate uncertainty of abundance 
estimates of acoustic survey. It could be extended on the whole North Sea Herring assessment 
process, probably by evaluating separately the uncertainty of abundance estimates of each 
surveys led in conjunction for that stock. 
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Table 1. Descriptive statistics of the acoustic backscattering coefficient (m2.nmi-2) and mean 
length (cm) data by surveyed year (minimum, first quartile, mean, standard deviation (SD), third 
quartile, maximum, size and percentage of zeros). 
 

Variable Year Min. 1st 
Quartile Mean SD 3rd 

Quartile Max. Size % 0 

1989 0.00 0.00 15.74 44.29 13.07 673.80 1096 41.14 
1990 0.00 0.00 17.21 36.28 16.59 384.20 1044 32.08 
1991 0.00 0.00 10.78 52.29 4.00 907.10 974 56.87 
1992 0.00 0.00 7.92 24.33 5.28 340.70 860 61.16 
1993 0.00 0.00 8.27 32.85 4.36 533.40 938 50.00 
1994 0.00 0.00 8.42 32.39 3.25 588.10 982 66.19 
2001 0.00 0.00 33.37 148.61 16.61 3531.00 957 54.75 
2002 0.00 0.00 30.03 94.92 21.26 1206.00 1002 47.10 

Acoustic 

2003 0.00 0.00 24.81 68.50 23.49 1416.00 1109 32.37 
 

1989 9.381 21.16 22.86 4.59 26.06 28.76 21  
1990 18.48 26.11 26.66 2.93 28.51 29.88 28  
1991 24.65 28.47 28.94 1.43 29.88 30.93 24  
1992 19.56 25.81 27.49 4.14 30.54 31.55 11  
1993 19.81 27.62 28.86 3.10 31.34 32.58 32  
1994 19.96 27.24 27.88 3.68 30.06 32.72 19  
2001 23.23 25.18 26.28 1.63 27.25 30.13 42  
2002 18.45 25.83 26.76 2.10 28.24 30.54 45  

Mean 
length 

2003 22.25 24.70 26.19 2.11 27.52 30.08 39  
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Table 2. Variogram models of the Gaussian variable of acoustic backscatter in 1989-1994 and 
2001-2003, fitted indirectly on lower-cut Gaussian variable. 
 

First component Second component 
Year Model components Nugget effect 

Sill Range (nmi) Sill Range (nmi) 

1989 nugget + spherical + spherical 0.200 0.450 12 0.350 100 

1990 nugget + exponentiel + spherical 0.150 0.750 5 0.100 50 

1991 nugget + spherical + spherical 0.400 0.450 15 0.150 100 

1992 nugget + spherical + spherical 0.350 0.300 6 0.400 40 

1993 nugget + spherical + spherical 0.320 0.530 15 0.250 50 

1994 nugget + spherical + spherical 0.300 0.400 10 0.300 35 
 

2001 nugget + spherical + spherical 0.100 0.400 11 0.800 65 

2002 nugget + spherical + spherical 0.200 0.250 10 0.725 55 

2003 nugget + spherical + spherical 0.225 0.375 12 0.425 50 
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Table 3. Comparative statistics of acoustic backscattering coefficient (m2.nmi-2) and mean 
length (cm) for each surveyed year. Estimates considered here are the mean and variance of raw 
data weighted by surfaces of influence, the mean and variance of kriged values and the 
simulated values, where mean and variance have been computed for each simulation before 
averaging the whole over the 200 simulations. 
 

Weighted data Kriged values Average of the simulated 
values Variable Year 

Mean Variance Mean Variance Mean Variance 

1989 15.68 2145.11 15.68 807.16 15.66 2193.94 

1990 15.06 1071.93 15.27 268.65 15.39 1095.35 

1991 9.96 2355.44 10.58 226.18 10.99 2968.25 

1992 8.08 623.42 7.67 66.40 8.29 701.02 

1993 6.72 849.84 7.27 102.12 7.47 1018.77 

1994 7.25 772.76 7.25 94.09 7.79 903.08 
 

2001 24.85 11216.89 26.66 2683.37 24.99 7953.22 

2002 26.48 7615.14 27.38 1473.71 27.14 6665.76 

Acoustic 

2003 23.87 4628.00 24.37 1232.26 24.89 4845.56 
 

1989 21.64 34.65 21.93 20.07 22.29 21.17 

1990 25.81 10.87 25.84 11.85 26.08 12.51 

1991 28.71 2.35 28.07 7.61 28.23 8.28 

1992 28.40 9.86 26.70 5.00 26.79 6.50 

1993 29.06 12.28 28.93 5.76 29.04 6.48 

1994 28.03 11.58 27.40 7.94 27.60 8.52 

 
2001 26.74 3.09 26.73 4.51 26.82 5.13 

2002 26.22 9.42 26.18 7.69 26.37 8.31 

Mean length 

2003 25.98 5.38 25.60 7.47 25.74 8.21 
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Table 4. Statistics of the simulations of numbers at age and total number (in millions) for each 
survey year. 
 

1989 1990 1991 1992 1993 Age 

Mean Sigma CV Mean Sigma CV Mean Sigma CV Mean Sigma CV Mean Sigma CV 

A1 2860 312 10.9 1282 208 16.2 208 92 44.2 523 139 26.6 315 140 44.4 

A2 415 40 9.6 262 25 9.5 76 21 27.6 802 99 12.3 234 63 26.9 

M2 2262 206 9.1 1170 92 7.9 471 98 20.8 1149 136 11.8 750 119 15.9 

A3 103 11 10.7 95 7 7.4 0 0 0 0 0 0 219 36 16.4 

M3 1907 218 11.4 1421 94 6.6 661 107 16.2 534 61 11.4 604 81 13.4 

A4 533 86 16.1 1200 82 6.8 1343 186 13.8 476 53 11.1 372 45 12.1 

A5 159 36 22.6 538 42 7.8 1223 159 13 524 64 12.2 341 41 12 

A6 75 20 26.7 207 19 9.2 516 74 14.3 262 34 13 487 59 12.1 

A7 25 7 28 159 17 10.7 279 52 18.6 56 13 23.2 282 37 13.1 

A8 26 12 46.2 54 8 14.8 137 29 21.2 19 6 31.6 78 12 15.4 

A9P 11 4 36.4 35 9 25.7 118 26 22 22 8 36.4 56 10 17.9 

Total 8375 700 8.4 6424 382 5.9 5032 612 12.2 4368 438 10 3739 460 12.3 

 
1994 2001 2002 2003 Age 

Mean Sigma CV Mean Sigma CV Mean Sigma CV Mean Sigma CV 

A1 512 126 24.6 241 99 41.1 453 93 20.5 833 233 28 

A2 161 35 21.7 1421 333 23.4 290 56 19.3 1599 200 12.5 

M2 2042 267 13.1 4430 516 11.6 1880 209 11.1 3037 286 9.4 

A3 5 1 20 76 11 14.5 22 4 18.2 285 29 10.2 

M3 532 63 11.8 1519 131 8.6 5406 492 9.1 2313 201 8.7 

A4 144 20 13.9 1160 100 8.6 1379 123 8.9 3804 358 9.4 

A5 93 15 16.1 1623 147 9.1 1042 103 9.9 563 63 11.2 

A6 103 16 15.5 487 49 10.1 1577 172 10.9 522 67 12.8 

A7 148 22 14.9 219 25 11.4 442 52 11.8 846 118 13.9 

A8 98 14 14.3 178 23 12.9 233 31 13.3 221 34 15.4 

A9P 61 10 16.4 132 21 15.9 197 29 14.7 292 46 15.8 

Total 3898 443 11.4 11485 1087 9.5 12921 1125 8.7 14316 1176 8.2 
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Figure 1a. Proportional representation of acoustic backscattering (m².nmi-²) of herring from the 
Scottish survey around Orkney and Shetland in July 2003. 
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Figure 1b. Proportional representation of mean length (cm) of herring at trawl stations from the 
Scottish survey around Orkney and Shetland in July 2003. 
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Figure 1c. Proportional representation of proportion at age 4 herring at trawl stations from the 
Scottish survey around Orkney and Shetland in July 2003. 
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Figure 2. Gaussian anamorphosis, associating a raw value Z and a Gaussian value Y 
corresponding to the same cumulative probability. A spline function was used to model the 
Gaussian anamorphosis. 
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Figure 3. Experimental variograms of the lower cut Gaussian (Y+) with circles proportional to 
number of data and its indirect fitted model (dash line). The model of the Gaussian (Y) used for 
the indirect fitting is the solid line. 
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Figure 4. Histogram of Y+. Histogram of Y obtained by Gibbs sampling. Variogram of Y 
corresponding to the desired model used to build the left part of the histogram of Y. 
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Figure 5a. A realisation, or conditional simulation, of the acoustic variable in Gaussian space. 
Only values above the Gaussian threshold yc corresponding to zero in the raw values have been 
displayed. 
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Figure 5b. A realisation, or conditional simulation, of the acoustic variable obtained after the 
reversed transformation. Only simulated values above zero have been displayed. 
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Figure 6. A realisation of mean length (cm) variable based on trawl data. 
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Figure7a. A realisation of proportion above age 3 
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Figure7b. A realisation of proportion above age 4 
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Figure7c. A realisation of proportion at age 3, obtained by difference between the two previous 
realisations. 
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Figure 8. Error distribution of numbers at age and total number (millions), year 2003. Vertical 
lines are the kriged estimates for each distribution. 
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Figure 9. Boxplots of the different age classes and the total number (millions) along the time 
series. 
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