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Abstract

Linear geostatistics, i.e. geostatistics basechervariogram, provide methods for estimating a
spatially distributed abundance with its estimati@miance. However, in complex situations,
such as combining the data collected during acosstiveys (i.e. acoustic backscattering, fish
length and fish age), these methods are limiteitheir ability to combine the different sources
of variability. As an alternative, geostatisticalnditional simulations, which can reproduce the
spatial variability of a variable, are particulanglpful in that they solve the latter problem.

In this paper, we investigate the uncertainty adtésh herring acoustic survey estimates using a
specific multivariate model. This includes highlkeswed distributions for the acoustic
backscatter data and incorporates relations betwepth, mean fish length and proportion at
age. Conditional simulations, i.e. simulations whiwnour the data values known at the data
points, are used to generate multiple realisationgcoustic backscatter, mean fish length and
proportion at age. These are combined to produdépteurealisations of herring density over
the sampled domain. All realisations are then usegrovide the error structure for the global
abundance estimate at age. The method is useddesathe uncertainty from acoustic surveys
on herring in the example year of 2003, and moreegdly for each year during the periods
1989 - 1994 and 2001 - 2003 to track significamtateons of abundance over the time series.
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1. Introduction

Scientific surveys, principally either trawl surngegr acoustic surveys, are often performed in
order to estimate abundances of either demersgbetagic fish populations respectively
(Gunderson 1993). This estimation requires the aoation of spatially located data. An
important point is the uncertainty of this estiroatiat least that part of the uncertainty due to
the spatial coverage of the survey (e.g. areasdmgtvirawl stations or acoustic transects). As
the variables of interest are often spatially aotelated, geostatistics have been recognized as
providing suitable methods to estimate fish abundainom survey data (e.g. Petitgas, 1993;
Rivoirard et al., 2000). This technique allows for:

- the capture of the spatial structure of fish dess(through the variogram, covariogram,
and either with or without a trend or drift) andfiioan appropriate structural model: this is the
geostatistical structural analysis;

- the estimation of global abundance with its eation variance: this is the variance of
the error of estimation, and can be computed fioenstructural model when the estimator is an
arithmetic or weighted average, without preferdrsganpling;
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- mapping by interpolation using kriging;

- simulations, conditional on the data (conditios@ihulations are simulations which
honour the data values, by contrast with non-caomtid simulations which reproduce the
geostatistical model but do not honour data).

In many cases, the estimation variance of the amoel can be computed in a
straightforward manner from a single variogram nhagled then be used to summarize the
spatial uncertainty of the abundance. In more cempases however, geostatistical simulations
are needed to provide the uncertainty. Simulatialsw the reproduction of the spatial
variability of the variable, and also the simulatiof errors and the computation of estimation
variances. They are particularly helpful to compestimation variances or probability when
different sources of variability must be combinedg. acoustic backscatter together with
biological data in acoustic surveys.

To date there have only been a few examples wheseealb survey variability has been
evaluated. Measures of uncertainty have been basedmpling error (Rose et al., 2000) and
survey timing, detectability, species composititarget strength, calibration coefficients and
missing strata (O’Driscol, 2004). Rare are the sagleere variances of abundance estimates are
evaluated for acoustic surveys (e.g. Demer 200dmoBa and Fernandes (2003) have attempted
an approach to build geostatistical conditional watons on Scottish herringClupea
harengu$, but the simple approach they used was not abtkeal with the specific distribution
of acoustic values, with many zeroes and a few habes, and resulted in bias. An alternative,
more considered approach is proposed in this pagain using the example of the Scottish
component of the North Sea herring acoustic su(Bayley et al., 1998).

2. Material and methods

2.1 Data

Acoustic surveys have been carried out in the eontiNorth Sea (western half of ICES division
IVa) in midsummer of each year since 1979 on thesmawning concentration of autumn
spawning herring. The investigation here used dali®ected from nine years by the research
vessel Scotia around Orkney and Shetland (1989-a8€64001-2003). This survey is part of a
larger international survey for North Sea herriBgiley et al., 1998). The result of the larger
survey, is used in the assessment process, whiamately aims to determine the total biomass,
total numbers and numbers at age of the North 8eaf stock (Simmonds, 1996).

The Scottish survey is made up of transect linas ¢over a domain defined according to
ICES rectangles (Figure l1a). Parallel transectisgas variable depending on the historically
perceived levels of abundance of the area beingle@n30, 15 or 7.5 nautical miles (nmi) are
chosen. Acoustic backscatter data were recorded) assSimrad EK500 echosounder operating
at 38 kHz. The echosounder system was calibratedagh survey according to recognised
procedures (Foote et al. 1987). Trawl hauls wekentaegularly to assist in the identification of
the acoustic backscatter as detected as echo tvgdbe echosounder and to collect biological
data such as fish length and fish age (Figure ib Ja). Echo traces were allocated to the
appropriate fish species by visual scrutiny of éosbogram (Reid et al., 1998). Outputs of the
scrutinised acoustic backscatter data were valtiéiseonautical area backscattering scattering
coefficient (equivalent toA#41T, in m2.nmi2) attributed to herring for an equivalent distance
sample unit (EDSU) of 2.5 nmi.

2.2 Global geostatistical model

The simulation was based on a global geostatistivatlel combining acoustic backscatter

(recorded along transects), mean length and priopsrat age (measured at trawl stations), that
were developed for the Scottish herring using e ékfom the surveys 1989-1994 (Rivoirard et
al., 2000). In the present paper the model has batnded to include several more recent
years. The essential characteristics of this madelnow recalled. In this model, the mean
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length increased with bottom depth and was mappgedkriging with depth as external drift.
Moreover, as the spatial distribution of fish lémgg rather stable over years, the map of mean
length for a given year was improved by using #rwgth data from the other available years
within an adequate three-dimensional model, whaterannual variability was incorporated as
a time component of the model (a nugget). Althotighspatial distribution of age varied from
year to year, it was not independent from thatesfgth. For a given year, the cumulative
proportion at age was closely related to the meagth through a logistic relation, and was
mapped by kriging using this logistic regressionnogan length as external drift and a residual
structure with no spatial discontinuity. Maps ofportions at age were then obtained by
differences between the maps of cumulative propasti The acoustic backscatter was mapped
by kriging. A map of the number of individuals walstained by combining the acoustic map
and the length map, using the target strengthrgtiterelationship for North Sea herring (ICES
2004). Finally, this is disaggregated into mapswhbers at age using the maps of proportions
at age.

In summary, maps of acoustic backscatter, mean lésfth (dependent on depth), and
proportions at ages (dependent on mean fish lemgghg combined in order to provide the total
abundance and abundances at age. In the presemnt pgpeated conditional simulations were
used instead of kriging: this gave repeated sinarat of abundances, conditional on the
different types of data, and estimates of uncestaof the estimated abundances. Kriged
estimates of the different variables (acoustic baatter, fish length and proportions at age)
were also obtained to verify that the average & #$imulations was close to the kriged
estimates. We will now consider the method used tfe@ conditional simulations, and
afterwards the particular case of the acoustic $atker.

2.3 Conditional smulation
A conditional geostatistical simulation of a Gaasstandom function model can be classically
done as follows (Chiles and Delfiner, 1999). Fissthon-conditional simulation of the random
function model Z(x) is performed. This is simplyr@alization of this random function, say
ZNCS(x), which reproduces the variability of the deb The turning bands method has been
used to generate the non conditional simulatiorenTthe simulation must be conditioned, in
order to honour the data values. Conditioning aufation, i.e. making a conditional simulation
from a non conditional simulation, can be donetneddy easily using kriging in the Gaussian
case. Let Z*(x) denote the kriged estimator of Zkany point x. One can write:
Z(XN)=Z*(X+H 4 ¥—- Z( M true value = kriged estimator + kriging error Q)

The kriging error is unknown since Z(x) is not kmawlowever, in the Gaussian case, this error
is spatially independent from the kriged proceste mea is to mimic such an error by using a
non conditional simulation, known everywhere:

- first, generate a non conditional simulation ZNQS
krige it from its values at the data locationsyo@NCS(x)*,
obtain the simulated error = simulated valueigéd value = ZNCS(x) - ZNCS(x)*,
add this error to the kriging of the real vargbl

Zes(N=Z* (Y H Zced ¥~ ZieS( R 2
=Zyes(W+H[Z(R — Zyd A

As kriging is an exact interpolator (reproducing tiata value at a data point), this is indeed
a conditional simulation: by construction it repugds the variability, and goes through the data
points. Thus conditioning a Gaussian simulatiorstimightforward once the values of the
Gaussian variable are known at the data points.Gduessian assumption is fundamental. Very
often the Gaussian assumption is not acceptablehenoriginal variable (e.g. a skewed
histogram), but is acceptable after a transformatimr anamorphosis: thus the conditional
simulation is made on the Gaussian variable, aed backtransformed to have a simulation of
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the original variable. However in the case of kigiwith external drift, the Gaussian
conditional simulation method still holds, with tl&aussian assumption reduced to the residual
from the drift.

We have considered that the Gaussian conditiomallation technique could be applied with
no transformation in the case of mean fish lengtti eumulative proportion variables, since
their distribution is close to Gaussian and we wionlicitly with the residuals from drifts.
However, the method is not sufficient for the admugariable: because of the skewness of the
distribution, a transformation is necessary, bet ¥alues cannot be directly transformed into
Gaussian values because of the high proportioeraies.

2.4 Simulation of the acoustic variable

We suppose that the acoustic variable, say Z(x)focms to a Gaussian anamorphosed model,
i.e. it stems from a standard Gaussian random ifumdf(x) using a Gaussian anamorphabis
Z(x) = ®(Y(x)). Knowing the anamorphosis is equivalent tiowing the histogram of Z, and
we have F(z) = P(Z(x) < z) = P(Y(xX) <y) = G(y). dlanamorphosis allows for the association
of any value Y the value Z with the same cumulagiwvebability. The reverse holds if the
anamorphosis can be considered to be inverted.iJlganerally the case when Z takes positive
values with no spikes. However, this is not theedas the zeroes, when the histogram of values
of Z presents a spike of zeroes. For instancéefialues of Z have 50% zeroes, any negative
value for the standard Gaussian Y can be assodiatedero value of Z. More generally, if the
values of Z have a proportion of zeroes equal goapy value of Y lower than yc can be
associated with a zero value of Z, where the thoieskic is determined by the proportion of
zeroes: p=P(Z =0) = P(Y < yc) = G(yc)

Hence it is not possible to transform directly trginal zero data values of Z into Gaussian
values. Since the Gaussian values of Y at datatpare not all determined, the above
conditional simulation method cannot be directlplaga, and moreover the variogram of the
Gaussian variable to be simulated cannot be dyreothputed. So some adaptations are needed.

First the values of Y at data points where Z iozanould be informed. Within the above
Gaussian model, the Y values at all data pointsilshconform to the variogram of Y (we will
see later how to determine this variogram). A Gibampler (Geman and Geman, 1984) was
used to simulate iteratively the Y values at dadants where Z is zero, conditional on their
being lower than yand on the Y values at the other data points (&neud992; Freulon 1994;
Lantuejoul, 2002). Once Y are informed at all daténts, the classical conditional simulation
method is applicable. Finally, a backtransformatan®d is applied to obtain the conditional
simulation of the raw variable.

Secondly, as seen above, the variogram of the @awgariable Y to be simulated cannot be
computed directly because the values of Y cannatdbermined directly at data points where Z
is zero. However the variogram of any transfornratb the Gaussian variable is a function of
the variogram of Y. This can be used to determimdiréctly the variogram of Y from the
variogram of a transformed variable known at atiadaoints. For this we have considered the
“lower-cut” Gaussian variable:

Y+ = yC]'Y<yc+ Yl/> yc (3)
This transformed variable, equal to Y where Z isifpee and to the continuous limit yc where Z
is zero, is known at all data points.

3. Results

The different simulation steps are now presentegeiails for one specific year (2003). We will

begin with the acoustic backscatter. This variabis characterised by a highly skewed
distribution with a large number of small valuebpat 30% zero values, and only a few large
values (Table 1). The Gaussian anamorphosis funetas determined by plotting the raw data
values against normally distributed values (Fig.Phis function was fitted using a spline
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function. It was used at the end of the simulagwocess for the back-transformation of the
Gaussian simulation into a raw realisation.

The values of the Gaussian variable were not knatvidlata points where the acoustic
backscatter is zero, but the values of the lowérc&aussian variable were known at all data
points. The experimental variogram of the lower-Gaiussian is presented in Figure 3. It was
indirectly fitted by considering that the Gaussiamiable had a nested structure with a nugget of
0.225, a spherical component of 0.375 with a rasfge2 nmi and another spherical component
of 0.425 with a range of 50 nmi. The models fittedthe others years also had nested structures
with a nugget component and, most of the time, $pberical components; a short range one
and a long range one (Table 2).

The simulation process of acoustic backscatter dealoped in two parts. First the Gibbs
sampling was used to simulate values of the Gaussaiable at the data points where the
acoustic backscatter was zero (Fig 4). Then, usiaglassical conditional simulation method, a
realisation of the Gaussian variable was produEegl%a), which was finally turned into a raw
acoustic backscatter realisation (Fig 5b).

Fish mean length and fish proportion above age wenellated more easily, as these were
variables that were close to being Gaussian. Tinelation process was a classical conditional
simulation, with respect to the geostatistical modeveloped for the two variables, i.e. a
kriging with depth as external drift with a timengponent for mean length residuals, and
kriging with a function of kriged mean length astezral drift for proportion above age
residuals. A realisation of mean length is presemeFigure 6 and realisations of proportion
above age are presented in Figures 7a and 7b. Bhezglisation at age was obtained as the
difference between the realisations of proporti@ogve successive ages (Fig 7c¢).

Finally, 200 conditional simulations of acoustickscatter, mean length and proportions at
age were produced for each year of the studiedbgef@ne can check that the conditional
simulations respect the statistics of the datayelbas the means of the kriging estimates (Table
3). Total abundance was obtained by combining itls¢ tivo simulated variables, whereas the
abundances at age were obtained by disaggregaengptal abundance according to simulated
proportions at age. The histograms of numbers atagl total humber obtained from the
simulations are presented for year 2003 in Figuréh#® error distribution is rather symmetric
and the kriging estimate lies within the distrilouti The main objective of the simulation is to
determine the error distribution and the uncenjaagsociated with the variables (Table 4). The
coefficients of variation of the abundances at dggndard deviation of the simulated
abundances divided by their mean) ranged from 5®%6.2%. High CVs were found for
extreme ages (age 1, age 8) when numbers weredtherwise CVs were mostly around 15%.
The CVs of the total number were lower than CVawhbers at age, around 10%.

4. Discussion

Concerning the methodology, Gibbs sampler has tadszl with care. Indeed, it has been
observed that the p.d.f. of the simulated datage@adh conditional Gaussian distribution as the
number of iterations becomes very large. HoweVer rate of convergence toward equilibrium
is not well known (Galli and Gao, 2001; Lantuejd2002). In our case, the number of iterations
was fixed to 1000. The resulting p.d.f. of the dimted values was checked to be Gaussian and
the variogram was checked to be fitted by the maded for the simulation.

The interest of such results is that one can foltbe numbers per age classes in time or
cohorts with their associated uncertainty respettiin figures 9 and 10. Thus, Scottish North
Sea herring decrease in total number from 19899 1as the distributions for the different
years slightly overlap and their means show a emstecrease. Years 2001 to 2003 present a
significantly higher level of abundance than yea®89 to 1994. However the increase of
abundance from 2001 to 2003 may not be significastthe distributions of years 2001 and
2003 overlap despite different means. In additage 2 has a higher abundance than age 1 (Fig.
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10). The consistently higher CV’s associated wijle & abundances verify that this survey is
not precise for this age group. This is not suimpggiven that younger fish tend to occur closer
inshore, where the survey does not sample so wdllyaunger fish often school at the surface
where the acoustic apparatus cannot detect them.2Agight be more representative of the
recruitment strength than age 1. Thus, the stugkedod presents two different levels of
recruitment; weak in majority for the first periashd higher for the last years with two strong
year classes (Fig. 9). A follow-up of cohort witletassociated uncertainties is also interesting
in order to clearly identify the strength of thefelient cohorts and detect change in time.
However, a complete time series would be needéallow these changes properly.

This methodology appears to be very interestingetaluate uncertainty of abundance
estimates of acoustic survey. It could be extermtethe whole North Sea Herring assessment
process, probably by evaluating separately the rtaiogy of abundance estimates of each
surveys led in conjunction for that stock.
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Table 1. Descriptive statistics of the acousticdsaattering coefficient (fmmi?) and mean
length (cm) data by surveyed year (minimum, fitrgagile, mean, standard deviation (SD), third
guartile, maximum, size and percentage of zeros).

st rd
Variable Year Min. Qu:;rtile Mean SD Qu3artile Max. Size % 0
1989 0.00 0.00 15.74 44.29 13.07 673.80 1096 41.14
1990 0.00 0.00 17.21 36.28 16.59 384.20 1044 32.08
1991 0.00 0.00 10.78 52.29 4.00 907.10 974 56.87
1992 0.00 0.00 7.92 24.33 5.28 340.70 860 61.16
Acoustic 1993 0.00 0.00 8.27 32.85 4.36 533.40 938 50.00
1994 0.00 0.00 8.42 32.39 3.25 588.10 982 66.19
2001 0.00 0.00 33.37 148.61 16.61 3531.00 957 54.75
2002 0.00 0.00 30.03 94.92 21.26 1206.00 1002 47.10
2003 0.00 0.00 24.81 68.50 23.49 1416.00 1109 32.37
1989 9.381 21.16 22.86 4.59 26.06 28.76 21
1990 18.48 26.11 26.66 2.93 28.51 29.88 28
1991 24.65 28.47 28.94 1.43 29.88 30.93 24
Mean 1992 19.56 25.81 27.49 4.14 30.54 31.55 11
length 1993 19.81 27.62 28.86 3.10 31.34 32.58 32
1994 19.96 27.24 27.88 3.68 30.06 32.72 19
2001 23.23 25.18 26.28 1.63 27.25 30.13 42
2002 18.45 25.83 26.76 2.10 28.24 30.54 45
2003 22.25 24.70 26.19 2.11 27.52 30.08 39




Table 2. Variogram models of the Gaussian variablcoustic backscatter in 1989-1994 and
2001-2003, fitted indirectly on lower-cut Gaussiamiable.

Vear Model components Nugget effect First component Second component
Sill Range (nmi) Sill Range (nmi)
1989 nugget + spherical + spherical 0.200 0.450 12 0.350 100
1990 nugget + exponentiel + spherical 0.150 0.750 5 0.100 50
1991 nugget + spherical + spherical 0.400 0.450 15 0.150 100
1992 nugget + spherical + spherical 0.350 0.300 6 0.400 40
1993 nugget + spherical + spherical 0.320 0.530 15 0.250 50
1994 nugget + spherical + spherical 0.300 0.400 10 0.300 35
2001 nugget + spherical + spherical 0.100 0.400 11 0.800 65
2002 nugget + spherical + spherical 0.200 0.250 10 0.725 55
2003 nugget + spherical + spherical 0.225 0.375 12 0.425 50




Table 3. Comparative statistics of acoustic badksgag coefficient (finmi?) and mean

length (cm) for each surveyed year. Estimates densd here are the mean and variance of raw
data weighted by surfaces of influence, the meawanance of kriged values and the
simulated values, where mean and variance havedmeputed for each simulation before
averaging the whole over the 200 simulations.

Average of the simulated

Variable Year Weighted data Kriged values values
Mean Variance Mean Variance Mean Variance
Acoustic 1989 15.68 2145.11 15.68 807.16 15.66 2193.94
1990 15.06 1071.93 15.27 268.65 15.39 1095.35
1991 9.96 2355.44 10.58 226.18 10.99 2968.25
1992 8.08 623.42 7.67 66.40 8.29 701.02
1993 6.72 849.84 7.27 102.12 7.47 1018.77
1994 7.25 772.76 7.25 94.09 7.79 903.08
2001 24.85 11216.89 26.66 2683.37 24.99 7953.22
2002 26.48 7615.14 27.38 1473.71 27.14 6665.76
2003 23.87 4628.00 24.37 1232.26 24.89 4845.56
Mean length 1989 21.64 34.65 21.93 20.07 22.29 21.17
1990 25.81 10.87 25.84 11.85 26.08 12.51
1991 28.71 2.35 28.07 7.61 28.23 8.28
1992 28.40 9.86 26.70 5.00 26.79 6.50
1993 29.06 12.28 28.93 5.76 29.04 6.48
1994 28.03 11.58 27.40 7.94 27.60 8.52
2001 26.74 3.09 26.73 4.51 26.82 5.13
2002 26.22 9.42 26.18 7.69 26.37 8.31
2003 25.98 5.38 25.60 7.47 25.74 8.21
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Table 4. Statistics of the simulations of numbeérage and total number (in millions) for each
survey year.

Age 1989 1990 1991 1992 1993
Mean Sigma CV Mean Sigma CV Mean Sigma CV  Mean Sigma CV Mean Sigma CV
Al 2860 312 109 1282 208 16.2 208 92 442 523 139 26.6 315 140 444
A2 415 40 9.6 262 25 9.5 76 21 276 802 99 123 234 63 26.9
M2 2262 206 9.1 1170 92 7.9 471 98 20.8 1149 136 118 750 119 159
A3 103 11 10.7 95 7 7.4 0 0 0 0 0 0 219 36 16.4
M3 1907 218 114 1421 94 6.6 661 107 16.2 534 61 11.4 604 81 134
A4 533 86 16.1 1200 82 6.8 1343 186 13.8 476 53 111 372 45 12.1
A5 159 36 226 538 42 7.8 1223 159 13 524 64 122 341 41 12
A6 75 20 26.7 207 19 9.2 516 74 143 262 34 13 487 59 121
A7 25 7 28 159 17 10.7 279 52 18.6 56 13 232 282 37 13.1
A8 26 12 46.2 54 8 148 137 29 21.2 19 6 31.6 78 12 154
A9P 11 4 36.4 35 9 257 118 26 22 22 8 36.4 56 10 17.9
Total 8375 700 84 6424 382 59 5032 612 122 4368 438 10 3739 460 123

Age 1994 2001 2002 2003
Mean Sigma CV Mean Sigma CV Mean Sigma CV Mean Sigma CV
Al 512 126 246 241 99 411 453 93 20.5 833 233 28
A2 161 35 21.7 1421 333 234 290 56 19.3 1599 200 125
M2 2042 267 13.1 4430 516 11.6 1880 209 11.1 3037 286 9.4
A3 5 1 20 76 11 14.5 22 4 18.2 285 29 10.2
M3 532 63 11.8 1519 131 8.6 5406 492 9.1 2313 201 8.7
A4 144 20 13.9 1160 100 8.6 1379 123 8.9 3804 358 9.4
A5 93 15 16.1 1623 147 9.1 1042 103 9.9 563 63 11.2
A6 103 16 155 487 49 101 1577 172 109 522 67 12.8
A7 148 22 14.9 219 25 11.4 442 52 11.8 846 118 13.9
A8 98 14 14.3 178 23 12.9 233 31 13.3 221 34 15.4
A9P 61 10 16.4 132 21 159 197 29 147 292 46 15.8

Total 3898 443 11.4 11485 1087 9.5 12921 1125 8.7 14316 1176 8.2
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Figure 1a. Proportional representation of acousitkscattering (m2.nd) of herring from the
Scottish survey around Orkney and Shetland in 2003.
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Figure 1b. Proportional representation of meantlegn) of herring at trawl stations from the
Scottish survey around Orkney and Shetland in 2003.
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Figure 1c. Proportional representation of proporab age 4 herring at trawl stations from the
Scottish survey around Orkney and Shetland in 2003.
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Figure 2. Gaussian anamorphosis, associating aahwe Z and a Gaussian value Y
corresponding to the same cumulative probabilitgphne function was used to model the
Gaussian anamorphosis.
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Figure 3. Experimental variograms of the lower@aussian (Y+) with circles proportional to
number of data and its indirect fitted model (dis®). The model of the Gaussian (Y) used for
the indirect fitting is the solid line.
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Figure 4. Histogram of Y+. Histogram of Y obtainey Gibbs sampling. Variogram of Y
corresponding to the desired model used to buéddft part of the histogram of Y.
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Figure 5a. A realisation, or conditional simulatiohthe acoustic variable in Gaussian space.
Only values above the Gaussian threshold yc carreipg to zero in the raw values have been

displayed.
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Figure 5b. A realisation, or conditional simulatiah the acoustic variable obtained after the
reversed transformation. Only simulated values alm®ro have been displayed.
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Figure 6. A realisation of mean length (cm) vargabased on trawl data.
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Figure7a. A realisation of proportion above age 3
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Figure7b. A realisation of proportion above age 4
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Figure7c. A realisation of proportion at age 3,anfx¢d by difference between the two previous
realisations.
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Figure 8. Error distribution of numbers at age totdl number (millions), year 2003. Vertical
lines are the kriged estimates for each distriloutio
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Figure 9. Boxplots of the different age classesthedotal number (millions) along the time
series.
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